R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Split split plot design

Statistical procedures for agricultural research, page 143, Grain Yields of Three Rice Varieties Grown under Three Management practices and Five Nitrogen levels; in a split-split-plot design with nitrogen as main-plot, management practice as subplot, and variety as sub-subplot factores, with three replications.

library(agricolae)
library(xtable)
sspdata <- read.csv("/Volumes/Celine/RQMA/RWorkDir/sspdata.csv") # path of data on my computer
print(sspdata, type = "html") # attached data
##     block nitrogen management variety  yield
## 1       1        0         m1       1  3.320
## 2       1        0         m2       1  3.766
## 3       1        0         m3       1  4.660
## 4       1       50         m1       1  3.188
## 5       1       50         m2       1  3.625
## 6       1       50         m3       1  5.232
## 7       1       80         m1       1  5.468
## 8       1       80         m2       1  5.759
## 9       1       80         m3       1  6.215
## 10      1      110         m1       1  4.246
## 11      1      110         m2       1  5.255
## 12      1      110         m3       1  6.829
## 13      1      140         m1       1  3.132
## 14      1      140         m2       1  5.389
## 15      1      140         m3       1  5.217
## 16      2        0         m1       1  3.864
## 17      2        0         m2       1  4.311
## 18      2        0         m3       1  5.915
## 19      2       50         m1       1  4.752
## 20      2       50         m2       1  4.809
## 21      2       50         m3       1  5.170
## 22      2       80         m1       1  5.788
## 23      2       80         m2       1  6.130
## 24      2       80         m3       1  7.106
## 25      2      110         m1       1  4.842
## 26      2      110         m2       1  5.742
## 27      2      110         m3       1  5.869
## 28      2      140         m1       1  4.375
## 29      2      140         m2       1  4.315
## 30      2      140         m3       1  5.389
## 31      3        0         m1       1  4.507
## 32      3        0         m2       1  4.875
## 33      3        0         m3       1  5.400
## 34      3       50         m1       1  4.756
## 35      3       50         m2       1  5.295
## 36      3       50         m3       1  6.046
## 37      3       80         m1       1  4.422
## 38      3       80         m2       1  5.308
## 39      3       80         m3       1  6.318
## 40      3      110         m1       1  4.863
## 41      3      110         m2       1  5.345
## 42      3      110         m3       1  6.011
## 43      3      140         m1       1  4.678
## 44      3      140         m2       1  5.896
## 45      3      140         m3       1  7.309
## 46      1        0         m1       2  6.101
## 47      1        0         m2       2  5.096
## 48      1        0         m3       2  6.573
## 49      1       50         m1       2  5.595
## 50      1       50         m2       2  6.357
## 51      1       50         m3       2  7.016
## 52      1       80         m1       2  5.442
## 53      1       80         m2       2  6.398
## 54      1       80         m3       2  6.953
## 55      1      110         m1       2  6.209
## 56      1      110         m2       2  6.992
## 57      1      110         m3       2  7.565
## 58      1      140         m1       2  6.860
## 59      1      140         m2       2  6.857
## 60      1      140         m3       2  7.254
## 61      2        0         m1       2  5.122
## 62      2        0         m2       2  4.873
## 63      2        0         m3       2  5.495
## 64      2       50         m1       2  6.780
## 65      2       50         m2       2  5.925
## 66      2       50         m3       2  7.442
## 67      2       80         m1       2  5.988
## 68      2       80         m2       2  6.533
## 69      2       80         m3       2  6.914
## 70      2      110         m1       2  6.768
## 71      2      110         m2       2  7.856
## 72      2      110         m3       2  7.626
## 73      2      140         m1       2  6.894
## 74      2      140         m2       2  6.974
## 75      2      140         m3       2  7.812
## 76      3        0         m1       2  4.815
## 77      3        0         m2       2  4.166
## 78      3        0         m3       2  4.225
## 79      3       50         m1       2  5.390
## 80      3       50         m2       2  5.163
## 81      3       50         m3       2  4.478
## 82      3       80         m1       2  6.509
## 83      3       80         m2       2  6.569
## 84      3       80         m3       2  7.991
## 85      3      110         m1       2  5.779
## 86      3      110         m2       2  6.164
## 87      3      110         m3       2  7.362
## 88      3      140         m1       2  6.573
## 89      3      140         m2       2  7.422
## 90      3      140         m3       2  8.950
## 91      1        0         m1       3  5.355
## 92      1        0         m2       3  7.442
## 93      1        0         m3       3  7.018
## 94      1       50         m1       3  6.706
## 95      1       50         m2       3  8.592
## 96      1       50         m3       3  8.480
## 97      1       80         m1       3  8.452
## 98      1       80         m2       3  8.662
## 99      1       80         m3       3  9.112
## 100     1      110         m1       3  8.042
## 101     1      110         m2       3  9.080
## 102     1      110         m3       3  9.660
## 103     1      140         m1       3  9.314
## 104     1      140         m2       3  9.224
## 105     1      140         m3       3 10.360
## 106     2        0         m1       3  5.536
## 107     2        0         m2       3  6.462
## 108     2        0         m3       3  8.020
## 109     2       50         m1       3  6.546
## 110     2       50         m2       3  7.646
## 111     2       50         m3       3  9.942
## 112     2       80         m1       3  6.698
## 113     2       80         m2       3  8.526
## 114     2       80         m3       3  9.140
## 115     2      110         m1       3  7.414
## 116     2      110         m2       3  9.016
## 117     2      110         m3       3  8.966
## 118     2      140         m1       3  8.508
## 119     2      140         m2       3  9.680
## 120     2      140         m3       3  9.896
## 121     3        0         m1       3  5.244
## 122     3        0         m2       3  5.584
## 123     3        0         m3       3  7.642
## 124     3       50         m1       3  7.092
## 125     3       50         m2       3  7.212
## 126     3       50         m3       3  8.714
## 127     3       80         m1       3  8.650
## 128     3       80         m2       3  8.514
## 129     3       80         m3       3  9.320
## 130     3      110         m1       3  6.902
## 131     3      110         m2       3  7.778
## 132     3      110         m3       3  9.128
## 133     3      140         m1       3  8.032
## 134     3      140         m2       3  9.294
## 135     3      140         m3       3  9.712
attach(sspdata)
model <- ssp.plot(block,nitrogen,management,variety,yield)
## 
## ANALYSIS SPLIT-SPLIT PLOT:  yield 
## Class level information
## 
## nitrogen     :  0 50 80 110 140 
## management   :  m1 m2 m3 
## variety  :  1 2 3 
## block    :  1 2 3 
## 
## Number of observations:  135 
## 
## Analysis of Variance Table
## 
## Response: yield
##                             Df  Sum Sq Mean Sq  F value    Pr(>F)    
## block                        2   0.732   0.366   0.6578  0.543910    
## nitrogen                     4  61.641  15.410  27.6953 9.734e-05 ***
## Ea                           8   4.451   0.556                       
## management                   2  42.936  21.468  81.9965 2.303e-10 ***
## nitrogen:management          8   1.103   0.138   0.5266  0.822648    
## Eb                          20   5.236   0.262                       
## variety                      2 206.013 103.007 207.8667 < 2.2e-16 ***
## variety:nitrogen             8  14.145   1.768   3.5679  0.001916 ** 
## variety:management           4   3.852   0.963   1.9432  0.114899    
## variety:nitrogen:management 16   3.699   0.231   0.4666  0.953759    
## Ec                          60  29.732   0.496                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## cv(a) = 11.4 %, cv(b) = 7.8 %, cv(c) = 10.7 %, Mean = 6.554415
gla <- model$gl.a; glb <- model$gl.b; glc <- model$gl.c
Ea <- model$Ea; Eb <- model$Eb; Ec <- model$Ec
LSD.test(yield,nitrogen,gla,Ea,console = TRUE)
## 
## Study: yield ~ nitrogen
## 
## LSD t Test for yield 
## 
## Mean Square Error:  0.5564188 
## 
## nitrogen,  means and individual ( 95 %) CI
## 
##        yield      std  r      LCL      UCL   Min    Max
## 0   5.384704 1.206963 27 5.053665 5.715743 3.320  8.020
## 50  6.220333 1.615861 27 5.889294 6.551372 3.188  9.942
## 80  6.995741 1.371302 27 6.664702 7.326780 4.422  9.320
## 110 6.937370 1.474547 27 6.606331 7.268409 4.246  9.660
## 140 7.233926 1.968153 27 6.902887 7.564965 3.132 10.360
## 
## alpha: 0.05 ; Df Error: 8
## Critical Value of t: 2.306004 
## 
## Least Significant Difference 0.4681598
## Means with the same letter are not significantly different.
## 
## Groups, Treatments and means
## a     140     7.234 
## a     80      6.996 
## a     110     6.937 
## b     50      6.22 
## c     0       5.385
LSD.test(yield,management,glb,Eb,console = TRUE)
## 
## Study: yield ~ management
## 
## LSD t Test for yield 
## 
## Mean Square Error:  0.2618167 
## 
## management,  means and individual ( 95 %) CI
## 
##       yield      std  r      LCL      UCL   Min    Max
## m1 5.900378 1.486531 45 5.741267 6.059488 3.132  9.314
## m2 6.486156 1.621936 45 6.327045 6.645266 3.625  9.680
## m3 7.276711 1.635020 45 7.117601 7.435822 4.225 10.360
## 
## alpha: 0.05 ; Df Error: 20
## Critical Value of t: 2.085963 
## 
## Least Significant Difference 0.2250164
## Means with the same letter are not significantly different.
## 
## Groups, Treatments and means
## a     m3      7.277 
## b     m2      6.486 
## c     m1      5.9
LSD.test(yield,variety,glc,Ec,console = TRUE)
## 
## Study: yield ~ variety
## 
## LSD t Test for yield 
## 
## Mean Square Error:  0.4955415 
## 
## variety,  means and individual ( 95 %) CI
## 
##      yield      std  r      LCL      UCL   Min    Max
## 1 5.126822 0.971530 45 4.916915 5.336730 3.132  7.309
## 2 6.396133 1.065752 45 6.186226 6.606041 4.166  8.950
## 3 8.140289 1.314438 45 7.930381 8.350197 5.244 10.360
## 
## alpha: 0.05 ; Df Error: 60
## Critical Value of t: 2.000298 
## 
## Least Significant Difference 0.2968543
## Means with the same letter are not significantly different.
## 
## Groups, Treatments and means
## a     3   8.14 
## b     2   6.396 
## c     1   5.127