\(\Sigma^\infty_{t=0}\beta^tu(c_t)\)
\(c_t + s_t = y_t + (1+r_t)s_{t-1} - \tau_t\)
\(c_t= y_t + (1+r_t)s_{t-1} - \tau_t - s_t\), \(s_t = k_t + b_t\)
\(g_t + (1+r)b_{1-t} = \tau_t + b_t\)
\(\tau^N_s = \tau_s - 100\)
\(\therefore b^N_s = b_s + 100\)
\(s^N_t = k_t + b^N_s\)
Tax cut means \(g_s + (1+r)b^N_s\)
\(g_s + (1+r)b^N_s = (1+r)(b^N_s-b_s)=100(1+r)\)
\(\tau_l\) should increase by \(100(1+r)^t\),\(100(1+r)^{l-s}\)
\(c_1 = y_1 - \tau - s_1 + (1+r)s_0\)
\(c_2 = y_2 - \tau - s_2 + (1+r)s_1\)
\(c_3 = y_3 - \tau - s_3 + (1+r)s_2\)
\(c_4 = y_4 - \tau - s_4 + (1+r)s_3\)
\(s_3 = \frac{c_4 - y_4 +\tau + s_4}{1+r}\)
\(s_2 = \frac{c_3 - y_3 +\tau + s_3}{1+r} - \frac{[c_4 - y_4 +\tau +s_4]}{(1+r)^2}\)
\(s_1 = \frac{c_2 - y_2 +\tau + s_2}{1+r} - \frac{[c_3 - y_3 +\tau +s_3]}{(1+r)^2} + \frac{[c_4 - y_4 +\tau +s_4]}{(1+r)^3}\)
\(\therefore \sum^\infty_{t=0} \frac{c_t}{(1+r)^t} = \sum^\infty_{t=0}\Bigg(\frac{y_t}{(1+r)^t} - \frac{\tau}{(1+r)^t}\Bigg)\)
In period s there is a tax cut of 100 goods, \(\tau^N_s = \tau_s - 100\)
The household is infinitely lived and aware that the tax cut must be repaid as there is no change in \(g_s\).
Assuming the household is perfectly rational they will not change their consumption and instead save the tax cut in preparation of the increase in taxes.
\(\Sigma^\infty_{t=0}\beta^tlog(c_t)\)
\(y_t = Ak^\alpha_tG^{1-\alpha}_t\)
\(\Delta k_{t+1} = i_t - \delta k_t\)
\(\Delta G_{t+1} = g_t - \delta G_t\)
\(C_t = Ak^\alpha _tG_t^{1-\alpha}-k_{t+1}+(1-\delta)kt-G_{t+1}+(1-\delta)G_t\)
\(F(K_t,H_t) = K^\alpha _tH^{1-\alpha}_t\),\(\delta = 1\)
\(\sum_{t=0}^{\infty}\beta^t(log(c_t)+\gamma log(l_t))\)
\(l_t + h_t = 1\), \(h_t = 1 - l_t\), \(l_t = 1 - h_t\)
\(c_t = w_th_t + r_ts_{t-1}-s_t\)
\(max\sum_{t=0}^{\infty}\beta^t(log(c_t)+\gamma log(l_t))\), with respect to \(s_t\),\(h_t\)
\(U = \sum_{t=0}^{\infty}\beta^t[log(w_th_t + r_ts_{t-1}-s_t)+\gamma log(1-ht)] +\beta^{t+1}[log(w_{t+1}h_{t+1}+r_{t+1}s_t-s_{t+1}) +\gamma log(1-h_{h+1})]\)
\(\frac{\partial U}{\partial S_t} = \beta^t\frac{1}{c_t}(-1)+\beta^{1+t}\frac{1}{c_{t+1}}(r_{t+1}) = 0\)
\(\beta^t[\frac{1}{c_t}(-1)+\beta\frac{1}{c_{t+1}}(r_{t+1})] = 0\)
\(-\beta^t\frac{1}{c_t} = -\beta^t[\beta\frac{1}{c_{t+1}}(r_{t+1})]\)
\(\frac{c_{t+1}}{\beta c_t} = r_{t+1}\)
\(\frac{\partial U}{\partial h_t} = \beta^t\frac{1}{c_t}(wt) + \beta^{t+1}\frac{1}{l_t}\gamma(-1) = 0\)
\(\beta^t\gamma\frac{1}{l_t} = \beta^t\frac{1}{c_t}(w_t)\)
\(\frac{\gamma c_t}{l_t}=w_t\)
\(\pi_{max} = K^\alpha_tH^{1-\alpha}_t - r_tK_t - w_tH_t\)
\(\frac{\partial\pi}{\partial K_t} = \alpha\big(\frac{H_t}{K_t}\big)^{1-\alpha} - r_t\)
\(r_t = \alpha\big(\frac{H_t}{K_t}\big)^{1-\alpha}\)
\(\frac{\partial\pi}{\partial H_t} = (1-\alpha)(\frac{K_t}{H_t})^{-\alpha} - w_t\)
\(w_t = (1-\alpha)(\frac{K_t}{H_t})^{-\alpha}\)