*The summary output shows the Min, 1st Qu, Median, Mean, 3rd Qu, and Max for each of the four variables.
summary(stackloss)
## Air.Flow Water.Temp Acid.Conc. stack.loss
## Min. :50.00 Min. :17.0 Min. :72.00 Min. : 7.00
## 1st Qu.:56.00 1st Qu.:18.0 1st Qu.:82.00 1st Qu.:11.00
## Median :58.00 Median :20.0 Median :87.00 Median :15.00
## Mean :60.43 Mean :21.1 Mean :86.29 Mean :17.52
## 3rd Qu.:62.00 3rd Qu.:24.0 3rd Qu.:89.00 3rd Qu.:19.00
## Max. :80.00 Max. :27.0 Max. :93.00 Max. :42.00
*Based on the output, the data frame for stackloss has 21 observations and 4 variables.
str(stackloss)
## 'data.frame': 21 obs. of 4 variables:
## $ Air.Flow : num 80 80 75 62 62 62 62 62 58 58 ...
## $ Water.Temp: num 27 27 25 24 22 23 24 24 23 18 ...
## $ Acid.Conc.: num 89 88 90 87 87 87 93 93 87 80 ...
## $ stack.loss: num 42 37 37 28 18 18 19 20 15 14 ...
*There is a positive correlation between the two variables because the Air.Flow variable increases as the Stack.loss variable increases
plot(stack.loss ~ Air.Flow, data = stackloss, xlab = "Air Flow", ylab = "Stack Loss", main = "Scatterplot of stack.loss vs. Air.Flow")