Survival by STS (high, low, none)

## Call: survfit(formula = Surv(last.fu.since.cua, death) ~ sts.order, 
##     data = dat)
## 
##                 n events median 0.95LCL 0.95UCL
## sts.order=high 47     30  0.567   0.400    1.16
## sts.order=low  19      8  2.256   1.864      NA
## sts.order=none 62     44  1.122   0.504    3.47

## Call: survfit(formula = Surv(last.fu.since.cua, death) ~ sts.order, 
##     data = dat)
## 
##                 sts.order=high 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     47       0    1.000  0.0000       1.0000        1.000
##   0.5     22      18    0.582  0.0759       0.4512        0.752
##   1.0     11       7    0.388  0.0792       0.2604        0.579
##   2.0      3       3    0.278  0.0785       0.1599        0.483
##   3.0      1       1    0.139  0.1058       0.0313        0.618
##   4.0      1       0    0.139  0.1058       0.0313        0.618
## 
##                 sts.order=low 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     19       0    1.000  0.0000       1.0000        1.000
##   0.5     13       3    0.812  0.0976       0.6421        1.000
##   1.0     10       1    0.750  0.1083       0.5652        0.995
##   2.0      5       1    0.643  0.1358       0.4249        0.973
##   3.0      2       2    0.386  0.1627       0.1687        0.882
##   4.0      1       1    0.193  0.1588       0.0384        0.969
## 
##                 sts.order=none 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     62       0    1.000  0.0000        1.000        1.000
##   0.5     35      23    0.615  0.0632        0.503        0.752
##   1.0     29       6    0.510  0.0654        0.396        0.655
##   2.0     20       6    0.400  0.0649        0.291        0.550
##   3.0     13       2    0.358  0.0646        0.251        0.510
##   4.0     10       2    0.298  0.0662        0.193        0.461
##   5.0      9       0    0.298  0.0662        0.193        0.461
## Call:
## coxph(formula = Surv(last.fu.since.cua, death) ~ sts.order, data = dat)
## 
##   n= 128, number of events= 82 
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)  
## sts.orderlow  -0.8527    0.4263   0.4004 -2.130   0.0332 *
## sts.ordernone -0.3733    0.6884   0.2538 -1.471   0.1412  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##               exp(coef) exp(-coef) lower .95 upper .95
## sts.orderlow     0.4263      2.346    0.1945    0.9343
## sts.ordernone    0.6884      1.453    0.4187    1.1321
## 
## Concordance= 0.563  (se = 0.033 )
## Rsquare= 0.042   (max possible= 0.994 )
## Likelihood ratio test= 5.46  on 2 df,   p=0.06515
## Wald test            = 5.12  on 2 df,   p=0.07715
## Score (logrank) test = 5.3  on 2 df,   p=0.07071

Survival by STS (yes, no)

## Call: survfit(formula = Surv(last.fu.since.cua, death) ~ trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=TRUE  66     38  0.969   0.553    2.26
## trt=FALSE 62     44  1.122   0.504    3.47

## Call: survfit(formula = Surv(last.fu.since.cua, death) ~ trt, data = dat)
## 
##                 trt=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     66       0    1.000  0.0000       1.0000        1.000
##   0.5     35      21    0.651  0.0621       0.5396        0.785
##   1.0     21       8    0.497  0.0675       0.3808        0.648
##   2.0      8       4    0.381  0.0745       0.2596        0.559
##   3.0      3       3    0.204  0.0862       0.0891        0.467
##   4.0      2       1    0.136  0.0799       0.0430        0.430
## 
##                 trt=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     62       0    1.000  0.0000        1.000        1.000
##   0.5     35      23    0.615  0.0632        0.503        0.752
##   1.0     29       6    0.510  0.0654        0.396        0.655
##   2.0     20       6    0.400  0.0649        0.291        0.550
##   3.0     13       2    0.358  0.0646        0.251        0.510
##   4.0     10       2    0.298  0.0662        0.193        0.461
##   5.0      9       0    0.298  0.0662        0.193        0.461
## Call:
## coxph(formula = Surv(last.fu.since.cua, death) ~ trt, data = dat)
## 
##   n= 128, number of events= 82 
## 
##             coef exp(coef) se(coef)      z Pr(>|z|)
## trtFALSE -0.1121    0.8939   0.2354 -0.476    0.634
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtFALSE    0.8939      1.119    0.5635     1.418
## 
## Concordance= 0.476  (se = 0.031 )
## Rsquare= 0.002   (max possible= 0.994 )
## Likelihood ratio test= 0.23  on 1 df,   p=0.6338
## Wald test            = 0.23  on 1 df,   p=0.6339
## Score (logrank) test = 0.23  on 1 df,   p=0.6337

Death or Hospitalization by STS (high, low, none)

## Call: survfit(formula = Surv(last.fu.since.cua, death.or.hospital) ~ 
##     sts.order, data = dat)
## 
##                 n events median 0.95LCL 0.95UCL
## sts.order=high 47     35  0.553   0.356    1.01
## sts.order=low  19      9  2.152   1.292      NA
## sts.order=none 62     53  1.122   0.504    2.36

## Call: survfit(formula = Surv(last.fu.since.cua, death.or.hospital) ~ 
##     sts.order, data = dat)
## 
##                 sts.order=high 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     47       0   1.0000  0.0000       1.0000        1.000
##   0.5     22      20   0.5386  0.0764       0.4079        0.711
##   1.0     11       8   0.3314  0.0749       0.2128        0.516
##   2.0      3       5   0.1582  0.0657       0.0701        0.357
##   3.0      1       1   0.0791  0.0649       0.0159        0.395
##   4.0      1       0   0.0791  0.0649       0.0159        0.395
## 
##                 sts.order=low 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     19       0    1.000  0.0000       1.0000        1.000
##   0.5     13       3    0.812  0.0976       0.6421        1.000
##   1.0     10       1    0.750  0.1083       0.5652        0.995
##   2.0      5       2    0.571  0.1382       0.3557        0.918
##   3.0      2       2    0.343  0.1502       0.1453        0.809
##   4.0      1       1    0.171  0.1426       0.0336        0.875
## 
##                 sts.order=none 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     62       0    1.000  0.0000       1.0000        1.000
##   0.5     35      23    0.615  0.0632       0.5030        0.752
##   1.0     29       6    0.510  0.0654       0.3964        0.655
##   2.0     20       7    0.383  0.0644       0.2755        0.532
##   3.0     13       7    0.249  0.0585       0.1571        0.395
##   4.0     10       3    0.191  0.0536       0.1107        0.331
##   5.0      9       1    0.172  0.0515       0.0959        0.310
## Call:
## coxph(formula = Surv(last.fu.since.cua, death.or.hospital) ~ 
##     sts.order, data = dat)
## 
##   n= 128, number of events= 97 
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)  
## sts.orderlow  -0.9572    0.3840   0.3766 -2.542   0.0110 *
## sts.ordernone -0.4901    0.6126   0.2372 -2.066   0.0388 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##               exp(coef) exp(-coef) lower .95 upper .95
## sts.orderlow     0.3840      2.604    0.1836    0.8033
## sts.ordernone    0.6126      1.632    0.3848    0.9751
## 
## Concordance= 0.573  (se = 0.031 )
## Rsquare= 0.063   (max possible= 0.997 )
## Likelihood ratio test= 8.33  on 2 df,   p=0.0155
## Wald test            = 8.02  on 2 df,   p=0.01816
## Score (logrank) test = 8.34  on 2 df,   p=0.01544

Death or Hospitalization by STS (yes, no)

## Call: survfit(formula = Surv(last.fu.since.cua, death.or.hospital) ~ 
##     trt, data = dat)
## 
##            n events median 0.95LCL 0.95UCL
## trt=TRUE  66     44  0.758   0.529    1.69
## trt=FALSE 62     53  1.122   0.504    2.36

## Call: survfit(formula = Surv(last.fu.since.cua, death.or.hospital) ~ 
##     trt, data = dat)
## 
##                 trt=TRUE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     66       0   1.0000  0.0000       1.0000        1.000
##   0.5     35      23   0.6196  0.0630       0.5077        0.756
##   1.0     21       9   0.4526  0.0665       0.3393        0.604
##   2.0      8       7   0.2787  0.0668       0.1742        0.446
##   3.0      3       3   0.1493  0.0664       0.0624        0.357
##   4.0      2       1   0.0995  0.0601       0.0305        0.325
## 
##                 trt=FALSE 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##   0.0     62       0    1.000  0.0000       1.0000        1.000
##   0.5     35      23    0.615  0.0632       0.5030        0.752
##   1.0     29       6    0.510  0.0654       0.3964        0.655
##   2.0     20       7    0.383  0.0644       0.2755        0.532
##   3.0     13       7    0.249  0.0585       0.1571        0.395
##   4.0     10       3    0.191  0.0536       0.1107        0.331
##   5.0      9       1    0.172  0.0515       0.0959        0.310
## Call:
## coxph(formula = Surv(last.fu.since.cua, death.or.hospital) ~ 
##     trt, data = dat)
## 
##   n= 128, number of events= 97 
## 
##             coef exp(coef) se(coef)      z Pr(>|z|)
## trtFALSE -0.1887    0.8280   0.2192 -0.861    0.389
## 
##          exp(coef) exp(-coef) lower .95 upper .95
## trtFALSE     0.828      1.208    0.5388     1.272
## 
## Concordance= 0.489  (se = 0.029 )
## Rsquare= 0.006   (max possible= 0.997 )
## Likelihood ratio test= 0.74  on 1 df,   p=0.3896
## Wald test            = 0.74  on 1 df,   p=0.3893
## Score (logrank) test = 0.74  on 1 df,   p=0.3888

Number of hospitalization by STS (high, low, none)

## Analysis of Variance Table
## 
## Response: n.hospital
##            Df  Sum Sq Mean Sq F value Pr(>F)
## sts.order   2   4.021  2.0103   1.303 0.2754
## Residuals 125 192.854  1.5428
## 
##  Kruskal-Wallis rank sum test
## 
## data:  n.hospital by sts.order
## Kruskal-Wallis chi-squared = 1.0892, df = 2, p-value = 0.5801

Number of hospitalization by STS (yes, no)

## Analysis of Variance Table
## 
## Response: n.hospital
##            Df  Sum Sq Mean Sq F value Pr(>F)
## trt         1   1.673  1.6726  1.0797 0.3008
## Residuals 126 195.202  1.5492
## 
##  Kruskal-Wallis rank sum test
## 
## data:  n.hospital by trt
## Kruskal-Wallis chi-squared = 0.75135, df = 1, p-value = 0.386