This webpage will show the results of a bat survey study done in the Plumas National Forest in North California. The objective of this study is to determine the distribution of the different species of bats within the park. In order to do that we have performed occupancy models for the species present in the park. The results of this models will be shown as maps showing the probability of occurence of bats in each point, that is, if you see a value of 1, there is a 100% chance of finding a bat in that point, if there is a value of 0 there is 0% chance of finding that specie in that point, if there is a value of 0.5 there is a 50% chance of finding that specie in that point.
Another result
In this area 0 means absence, and 1 means prescence. This table has for each site (ID), every specie and day, so for example if Mylu1=0, that means that for Myotis lucifugus (common name Little Brown bat, was detected on day one for that particular site).
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
psi(Int) | -0.07 | 0.08 | 0.28 |
(0.86) | (0.92) | (1.09) | |
p(Int) | -1.30* | -1.44* | -1.57* |
(0.61) | (0.61) | (0.63) | |
p(Mintemp) | 0.41 | ||
(0.33) | |||
p(Meantemp) | 0.40 | ||
(0.32) | |||
Log Likelihood | -47.31 | -46.54 | -46.55 |
AICc | 98.88 | 99.62 | 99.64 |
Delta | 0.00 | 0.75 | 0.76 |
Weight | 0.03 | 0.02 | 0.02 |
Num. obs. | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | |
---|---|---|---|---|---|---|---|---|---|
psi(Int) | -0.40 | -0.42 | -0.29 | -0.33 | -0.22 | -0.60 | -0.65 | -0.37 | -0.37 |
(0.62) | (0.58) | (0.67) | (0.65) | (0.69) | (0.53) | (0.53) | (0.64) | (0.63) | |
p(Int) | -0.98 | -0.96 | -1.10* | -1.05 | -1.15* | -0.74 | -0.66 | -1.01 | -1.00 |
(0.54) | (0.52) | (0.55) | (0.55) | (0.54) | (0.58) | (0.64) | (0.54) | (0.54) | |
p(Maxtemp) | 0.42 | ||||||||
(0.37) | |||||||||
p(Maxhum) | -0.32 | ||||||||
(0.31) | |||||||||
p(Meanhum) | -0.26 | ||||||||
(0.31) | |||||||||
p(sdtemp) | 0.34 | ||||||||
(0.42) | |||||||||
p(Meantemp) | 0.43 | ||||||||
(0.56) | |||||||||
p(Mintemp) | 0.44 | ||||||||
(0.63) | |||||||||
p(Minhum) | -0.18 | ||||||||
(0.31) | |||||||||
p(sdhum) | -0.19 | ||||||||
(0.34) | |||||||||
Log Likelihood | -48.44 | -47.77 | -47.93 | -48.09 | -48.11 | -48.11 | -48.17 | -48.26 | -48.29 |
AICc | 101.14 | 102.08 | 102.39 | 102.70 | 102.76 | 102.76 | 102.88 | 103.05 | 103.12 |
Delta | 0.00 | 0.94 | 1.25 | 1.56 | 1.62 | 1.62 | 1.74 | 1.91 | 1.98 |
Weight | 0.21 | 0.13 | 0.11 | 0.10 | 0.10 | 0.10 | 0.09 | 0.08 | 0.08 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | |
---|---|---|
psi(Int) | -0.41 | -0.46 |
(0.33) | (0.32) | |
p(Int) | 1.16* | 1.28** |
(0.47) | (0.46) | |
p(Julian) | -0.72 | |
(0.45) | ||
p(Maxtemp) | -8.48* | -7.45* |
(3.75) | (3.35) | |
p(Mintemp) | 7.67* | 6.93* |
(3.11) | (2.82) | |
p(sdtemp) | 8.64* | 7.79* |
(3.42) | (3.12) | |
Log Likelihood | -51.57 | -52.91 |
AICc | 117.14 | 117.21 |
Delta | 0.00 | 0.07 |
Weight | 0.51 | 0.49 |
Num. obs. | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
psi(Int) | 6.28 | 0.87 | 0.63 | 5.35 | 5.72 | 5.71 | 7.80 | 6.47 | 0.86 | 5.63 | 7.21 | 0.40 |
(40.98) | (1.00) | (0.94) | (41.14) | (39.15) | (33.44) | (57.62) | (29.46) | (0.96) | (32.02) | (46.65) | (0.93) | |
p(Int) | -2.58*** | -2.49*** | -2.31*** | -2.62*** | -2.60*** | -2.61*** | -2.74*** | -2.72*** | -2.50*** | -2.60*** | -2.72*** | -2.14*** |
(0.36) | (0.54) | (0.54) | (0.42) | (0.38) | (0.38) | (0.40) | (0.40) | (0.54) | (0.38) | (0.39) | (0.58) | |
p(Julian) | -0.65* | -0.66 | -0.68* | -0.64 | -0.67* | -0.70 | -0.67 | -0.59 | -0.66* | -0.74* | ||
(0.33) | (0.37) | (0.34) | (0.33) | (0.34) | (0.36) | (0.36) | (0.39) | (0.33) | (0.36) | |||
p(Maxtemp) | -7.29* | -8.31** | -7.82* | -7.86* | ||||||||
(3.20) | (3.13) | (3.06) | (3.27) | |||||||||
p(Mintemp) | 6.27* | 11.25** | 0.31 | 0.54 | 10.06** | 0.52 | 6.64* | |||||
(2.62) | (3.87) | (0.32) | (0.35) | (3.77) | (0.35) | (2.66) | ||||||
p(sdtemp) | 6.28* | 8.48** | 7.73** | 6.83* | ||||||||
(2.75) | (2.90) | (2.84) | (2.78) | |||||||||
p(Meantemp) | -4.21 | 0.28 | 0.57 | -3.40 | ||||||||
(2.45) | (0.33) | (0.37) | (2.40) | |||||||||
p(Meanhum) | 0.27 | 0.54 | 0.58 | |||||||||
(0.31) | (0.37) | (0.39) | ||||||||||
p(Maxhum) | 0.25 | 0.50 | ||||||||||
(0.32) | (0.37) | |||||||||||
Log Likelihood | -39.25 | -36.11 | -36.22 | -38.78 | -38.87 | -38.88 | -37.65 | -37.68 | -35.02 | -38.94 | -37.79 | -37.81 |
AICc | 85.03 | 86.21 | 86.43 | 86.47 | 86.65 | 86.67 | 86.70 | 86.76 | 86.78 | 86.79 | 86.98 | 87.01 |
Delta | 0.00 | 1.18 | 1.40 | 1.44 | 1.62 | 1.64 | 1.67 | 1.73 | 1.74 | 1.76 | 1.95 | 1.98 |
Weight | 0.17 | 0.09 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | |
---|---|---|---|---|---|---|---|---|---|---|
psi(Int) | 1.39** | 1.39** | 1.54** | 1.39** | 1.38** | 1.41** | 1.56** | 1.44** | 1.43** | 1.40** |
(0.44) | (0.44) | (0.53) | (0.44) | (0.44) | (0.45) | (0.55) | (0.46) | (0.46) | (0.45) | |
p(Int) | 0.36 | 0.37 | 0.28 | 0.38 | 0.38 | 0.36 | 0.27 | 0.34 | 0.33 | 0.34 |
(0.23) | (0.23) | (0.24) | (0.23) | (0.23) | (0.23) | (0.25) | (0.23) | (0.23) | (0.23) | |
p(Maxhum) | -0.42* | -0.56* | -0.93 | -0.40 | -0.58* | -1.51 | ||||
(0.21) | (0.25) | (0.59) | (0.21) | (0.27) | (0.79) | |||||
p(Meanhum) | 1.25 | 0.54 | 1.74 | -0.30 | ||||||
(0.80) | (0.57) | (1.07) | (0.20) | |||||||
p(Minhum) | -1.93* | -0.52* | -0.77 | -0.32 | ||||||
(0.95) | (0.24) | (0.52) | (0.20) | |||||||
p(sdhum) | -0.98* | -0.39 | ||||||||
(0.48) | (0.24) | |||||||||
p(Mintemp) | -0.28 | |||||||||
(0.27) | ||||||||||
p(sdtemp) | 0.19 | |||||||||
(0.21) | ||||||||||
p(Meantemp) | -0.28 | |||||||||
(0.30) | ||||||||||
Log Likelihood | -94.44 | -92.58 | -93.92 | -93.96 | -93.96 | -94.04 | -94.05 | -92.82 | -95.34 | -95.39 |
AICc | 195.42 | 196.55 | 196.75 | 196.83 | 196.83 | 196.98 | 197.01 | 197.04 | 197.22 | 197.31 |
Delta | 0.00 | 1.13 | 1.33 | 1.41 | 1.41 | 1.56 | 1.60 | 1.62 | 1.80 | 1.89 |
Weight | 0.19 | 0.11 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.07 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
psi(Int) | -1.40** | -1.32** | -1.29** | -1.23* | -1.38** | -1.37** | -1.26* |
(0.44) | (0.48) | (0.50) | (0.53) | (0.45) | (0.46) | (0.53) | |
p(Int) | -0.20 | -0.37 | -0.42 | -0.54 | -0.23 | -0.28 | -0.50 |
(0.52) | (0.58) | (0.61) | (0.65) | (0.53) | (0.55) | (0.68) | |
p(Meanhum) | 0.35 | ||||||
(0.43) | |||||||
p(Julian) | -0.35 | ||||||
(0.46) | |||||||
p(Mintemp) | -0.51 | ||||||
(0.69) | |||||||
p(Minhum) | 0.31 | ||||||
(0.51) | |||||||
p(Maxhum) | 0.24 | ||||||
(0.39) | |||||||
p(Meantemp) | -0.41 | ||||||
(0.64) | |||||||
Log Likelihood | -37.22 | -36.89 | -36.95 | -37.02 | -37.03 | -37.03 | -37.06 |
AICc | 78.70 | 80.32 | 80.44 | 80.57 | 80.59 | 80.60 | 80.65 |
Delta | 0.00 | 1.61 | 1.73 | 1.87 | 1.89 | 1.90 | 1.95 |
Weight | 0.29 | 0.13 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
psi(Int) | -0.43 | -0.71 | -0.74 | -0.90* | -0.83 | -0.89 | -1.06* | -0.59 | -0.74 | -0.81 | -0.81 | -0.72 |
(0.72) | (0.50) | (0.50) | (0.45) | (0.47) | (0.46) | (0.51) | (0.61) | (0.51) | (0.49) | (0.44) | (0.50) | |
p(Int) | -1.48* | -1.32* | -1.25* | -1.11 | -1.22* | -1.06 | -0.64 | -1.39* | -1.37* | -1.27* | -1.30* | -1.29* |
(0.66) | (0.58) | (0.58) | (0.63) | (0.61) | (0.62) | (0.55) | (0.61) | (0.62) | (0.62) | (0.59) | (0.59) | |
p(Julian) | 0.82 | 1.36* | 1.25* | 1.85* | 1.37* | 1.51* | 1.11 | 1.46* | 1.38* | 1.60* | 1.29* | |
(0.42) | (0.66) | (0.59) | (0.84) | (0.67) | (0.68) | (0.58) | (0.72) | (0.67) | (0.75) | (0.61) | ||
p(Meanhum) | 0.87 | 1.99 | 1.26 | 3.60* | 1.62 | |||||||
(0.63) | (1.13) | (0.81) | (1.77) | (1.19) | ||||||||
p(Maxhum) | 0.83 | 1.47 | 1.62 | 1.21 | ||||||||
(0.59) | (0.82) | (0.91) | (0.77) | |||||||||
p(Maxtemp) | 1.70 | 1.32 | ||||||||||
(1.24) | (1.05) | |||||||||||
p(Meantemp) | 1.15 | 0.77 | 1.54 | |||||||||
(0.92) | (0.87) | (0.93) | ||||||||||
p(Minhum) | 0.54 | -2.17 | -0.93 | |||||||||
(0.63) | (1.44) | (1.22) | ||||||||||
p(Mintemp) | 0.75 | |||||||||||
(0.84) | ||||||||||||
Log Likelihood | -38.31 | -37.13 | -37.16 | -36.18 | -36.41 | -36.42 | -40.05 | -37.83 | -36.67 | -36.71 | -35.54 | -36.84 |
AICc | 83.14 | 83.17 | 83.23 | 83.76 | 84.22 | 84.24 | 84.35 | 84.56 | 84.73 | 84.81 | 85.08 | 85.09 |
Delta | 0.00 | 0.02 | 0.08 | 0.61 | 1.08 | 1.09 | 1.21 | 1.41 | 1.58 | 1.66 | 1.93 | 1.94 |
Weight | 0.13 | 0.13 | 0.13 | 0.10 | 0.08 | 0.08 | 0.07 | 0.07 | 0.06 | 0.06 | 0.05 | 0.05 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | Model 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
psi(Int) | -1.36* | -1.55*** | -1.35* | -1.39** | -1.64*** | -1.61*** | -1.53** | -1.65*** | -1.39** | -1.62*** | -1.60*** | -1.45** | -1.36* |
(0.55) | (0.44) | (0.53) | (0.50) | (0.42) | (0.42) | (0.47) | (0.42) | (0.53) | (0.43) | (0.43) | (0.53) | (0.55) | |
p(Int) | -0.68 | -0.11 | -0.73 | -0.57 | 0.40 | 1.27 | -0.28 | 0.69 | -0.61 | 0.28 | 0.17 | -0.52 | -0.68 |
(0.64) | (0.64) | (0.62) | (0.60) | (0.63) | (0.88) | (0.69) | (0.72) | (0.63) | (0.71) | (0.75) | (0.68) | (0.64) | |
p(sdhum) | 1.25 | 0.59 | |||||||||||
(0.76) | (0.53) | ||||||||||||
p(sdtemp) | -1.63 | -1.83 | -4.08 | -0.67 | -2.17 | -2.08 | |||||||
(1.01) | (1.07) | (2.12) | (0.79) | (1.22) | (1.26) | ||||||||
p(Julian) | 0.64 | -1.59 | |||||||||||
(0.56) | (1.05) | ||||||||||||
p(Minhum) | -1.01 | -2.46 | -1.38 | -2.78 | -2.04 | -0.24 | |||||||
(0.67) | (1.31) | (0.82) | (1.61) | (1.17) | (0.44) | ||||||||
p(Meantemp) | -6.66* | 0.21 | |||||||||||
(3.30) | (0.39) | ||||||||||||
p(Mintemp) | 6.49* | 0.31 | |||||||||||
(3.15) | (0.40) | ||||||||||||
p(Meanhum) | 2.03 | ||||||||||||
(1.53) | |||||||||||||
p(Maxhum) | 1.52 | ||||||||||||
(1.16) | |||||||||||||
Log Likelihood | -33.00 | -30.85 | -32.30 | -32.32 | -31.25 | -30.01 | -32.65 | -30.25 | -32.69 | -30.33 | -30.40 | -32.85 | -32.85 |
AICc | 70.26 | 70.61 | 71.13 | 71.17 | 71.40 | 71.42 | 71.84 | 71.89 | 71.92 | 72.06 | 72.20 | 72.22 | 72.23 |
Delta | 0.00 | 0.35 | 0.87 | 0.92 | 1.15 | 1.16 | 1.58 | 1.64 | 1.67 | 1.80 | 1.95 | 1.97 | 1.97 |
Weight | 0.14 | 0.12 | 0.09 | 0.09 | 0.08 | 0.08 | 0.06 | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
psi(Int) | -2.07** | -1.96** | -2.38** | -2.51*** | -1.94* | -1.95* | -1.96** | -2.56*** | -1.97** | -1.97* | -1.97** | -2.02** |
(0.75) | (0.76) | (0.73) | (0.76) | (0.75) | (0.76) | (0.76) | (0.74) | (0.76) | (0.77) | (0.76) | (0.75) | |
p(Int) | -40.03 | -72.83 | -3.17 | 7.25 | -16.15 | -18.59 | -47.00 | 5.15 | -23.44 | -25.79 | -34.78 | -18.73 |
(41.99) | (78.15) | (8.92) | (11.20) | (15.77) | (27.96) | (54.69) | (7.06) | (32.54) | (37.52) | (32.67) | (21.66) | |
p(Julian) | 103.25 | 112.56 | 35.03 | 69.48 | 31.13 | 41.56 | 79.48 | 53.28 | 48.64 | 44.87 | 59.41 | 38.15 |
(120.80) | (118.24) | (49.25) | (123.97) | (50.57) | (55.42) | (90.19) | (58.78) | (58.73) | (58.93) | (53.81) | (39.79) | |
p(Meantemp) | 29.31 | 42.83 | 9.83 | 15.87 | 11.82 | |||||||
(31.42) | (85.37) | (14.82) | (21.88) | (13.41) | ||||||||
p(Maxtemp) | 51.39 | 35.95 | ||||||||||
(54.74) | (41.41) | |||||||||||
p(sdtemp) | 34.74 | 20.66 | 27.54 | |||||||||
(49.99) | (31.13) | (34.72) | ||||||||||
p(Meanhum) | -40.50 | -20.77 | -11.63 | |||||||||
(65.65) | (19.56) | (17.58) | ||||||||||
p(Mintemp) | -34.83 | 12.76 | 22.26 | |||||||||
(68.45) | (17.13) | (20.68) | ||||||||||
p(sdhum) | -4.58 | |||||||||||
(8.16) | ||||||||||||
p(Maxhum) | -35.64 | -12.71 | ||||||||||
(37.76) | (19.61) | |||||||||||
Log Likelihood | -6.45 | -6.48 | -6.92 | -7.15 | -6.04 | -6.06 | -6.08 | -7.36 | -6.13 | -6.14 | -6.17 | -6.20 |
AICc | 21.81 | 21.87 | 22.75 | 23.22 | 23.47 | 23.52 | 23.55 | 23.63 | 23.66 | 23.67 | 23.73 | 23.80 |
Delta | 0.00 | 0.06 | 0.95 | 1.41 | 1.66 | 1.71 | 1.74 | 1.82 | 1.85 | 1.86 | 1.93 | 2.00 |
Weight | 0.16 | 0.15 | 0.10 | 0.08 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | Model 13 | Model 14 | Model 15 | Model 16 | Model 17 | Model 18 | Model 19 | Model 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
psi(Int) | -0.36 | -0.36 | -0.36 | -0.26 | -0.13 | -0.15 | -0.27 | -0.25 | -0.13 | -0.05 | -0.26 | -0.16 | -0.25 | -0.13 | -0.28 | -0.26 | -0.29 | -0.05 | -0.36 | -0.30 |
(0.33) | (0.33) | (0.33) | (0.37) | (0.42) | (0.40) | (0.35) | (0.37) | (0.40) | (0.41) | (0.37) | (0.42) | (0.37) | (0.40) | (0.36) | (0.37) | (0.35) | (0.43) | (0.32) | (0.35) | |
p(Int) | 0.21 | 0.19 | 0.21 | -0.05 | -0.26 | -0.21 | 0.07 | -0.07 | -0.21 | -0.33 | -0.04 | -0.20 | -0.03 | -0.21 | -0.01 | -0.02 | 0.06 | -0.34 | 0.20 | 0.11 |
(0.35) | (0.34) | (0.35) | (0.41) | (0.43) | (0.41) | (0.37) | (0.41) | (0.39) | (0.40) | (0.40) | (0.46) | (0.42) | (0.40) | (0.41) | (0.44) | (0.37) | (0.40) | (0.34) | (0.37) | |
p(Maxhum) | 1.65 | 1.37 | 1.35 | 1.32 | 1.26 | |||||||||||||||
(1.05) | (1.02) | (1.04) | (1.06) | (1.11) | ||||||||||||||||
p(Meanhum) | -2.22* | -0.65* | -0.79* | -0.92* | -0.61* | -0.86* | -0.75* | -0.87* | -2.19* | -2.04* | -0.81* | -2.07* | -0.65* | -1.83 | ||||||
(1.06) | (0.30) | (0.34) | (0.37) | (0.30) | (0.35) | (0.32) | (0.36) | (1.03) | (1.04) | (0.35) | (1.05) | (0.30) | (1.13) | |||||||
p(Minhum) | -0.70* | -0.98* | -0.77* | -0.80* | -0.61 | -0.89* | ||||||||||||||
(0.32) | (0.39) | (0.33) | (0.34) | (0.34) | (0.39) | |||||||||||||||
p(Mintemp) | -0.62 | -0.63 | -0.53 | -0.53 | ||||||||||||||||
(0.41) | (0.39) | (0.40) | (0.44) | |||||||||||||||||
p(Maxtemp) | -0.87 | -0.84 | -0.83 | -0.78 | -0.82 | |||||||||||||||
(0.52) | (0.50) | (0.49) | (0.56) | (0.49) | ||||||||||||||||
p(Julian) | 0.53 | 0.54 | 0.52 | 0.52 | 0.38 | 0.37 | 0.35 | |||||||||||||
(0.38) | (0.36) | (0.35) | (0.36) | (0.41) | (0.36) | (0.43) | ||||||||||||||
p(Meantemp) | -0.61 | -0.60 | -0.43 | -0.48 | ||||||||||||||||
(0.42) | (0.41) | (0.42) | (0.48) | |||||||||||||||||
p(sdhum) | 0.29 | |||||||||||||||||||
(0.34) | ||||||||||||||||||||
Log Likelihood | -63.21 | -64.43 | -64.51 | -63.37 | -63.38 | -63.46 | -63.56 | -63.56 | -62.34 | -62.34 | -63.60 | -62.48 | -62.50 | -62.60 | -63.95 | -62.74 | -64.01 | -62.88 | -64.13 | -62.90 |
AICc | 135.33 | 135.39 | 135.55 | 135.65 | 135.66 | 135.83 | 136.03 | 136.03 | 136.08 | 136.08 | 136.12 | 136.36 | 136.40 | 136.59 | 136.80 | 136.87 | 136.94 | 137.15 | 137.17 | 137.20 |
Delta | 0.00 | 0.06 | 0.22 | 0.33 | 0.34 | 0.50 | 0.70 | 0.70 | 0.75 | 0.75 | 0.79 | 1.03 | 1.07 | 1.26 | 1.47 | 1.54 | 1.61 | 1.83 | 1.84 | 1.87 |
Weight | 0.08 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | |
---|---|---|---|---|---|---|---|---|---|
psi(Int) | 0.13 | 0.15 | 0.13 | 0.19 | 0.21 | 0.12 | 0.10 | 0.14 | 0.13 |
(0.30) | (0.31) | (0.30) | (0.34) | (0.35) | (0.30) | (0.30) | (0.31) | (0.31) | |
p(Int) | 0.65* | 0.63* | 0.64* | 0.49 | 0.46 | 0.67* | 0.75* | 0.62* | 0.63* |
(0.28) | (0.28) | (0.28) | (0.35) | (0.39) | (0.28) | (0.31) | (0.28) | (0.28) | |
p(Maxtemp) | -0.35 | ||||||||
(0.28) | |||||||||
p(Minhum) | 0.20 | ||||||||
(0.24) | |||||||||
p(Meantemp) | -0.29 | ||||||||
(0.37) | |||||||||
p(Mintemp) | -0.29 | ||||||||
(0.38) | |||||||||
p(sdhum) | -0.19 | ||||||||
(0.25) | |||||||||
p(sdtemp) | -0.20 | ||||||||
(0.28) | |||||||||
p(Meanhum) | 0.16 | ||||||||
(0.23) | |||||||||
p(Maxhum) | 0.13 | ||||||||
(0.25) | |||||||||
Log Likelihood | -78.54 | -77.78 | -78.17 | -78.22 | -78.23 | -78.24 | -78.28 | -78.30 | -78.39 |
AICc | 161.34 | 162.09 | 162.87 | 162.98 | 162.99 | 163.02 | 163.10 | 163.13 | 163.32 |
Delta | 0.00 | 0.75 | 1.54 | 1.64 | 1.65 | 1.68 | 1.76 | 1.79 | 1.98 |
Weight | 0.21 | 0.15 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | Model 13 | Model 14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
psi(Int) | 0.17 | 0.16 | 0.15 | 0.13 | -0.58 | -0.80 | -0.23 | 0.20 | -0.22 | -0.61 | 0.20 | 0.15 | 0.18 | 0.15 |
(0.33) | (0.33) | (0.32) | (0.32) | (0.60) | (0.67) | (0.45) | (0.35) | (0.46) | (0.53) | (0.35) | (0.33) | (0.34) | (0.33) | |
psi(Burn.intensity.basal) | 0.72 | 1.04 | 0.46 | |||||||||||
(0.37) | (0.65) | (0.48) | ||||||||||||
p(Int) | 0.65* | 0.65* | 0.65* | 0.65* | 0.63* | 0.62* | 0.64* | 0.65* | 0.64* | 0.64* | 0.64* | 0.65* | 0.65* | 0.65* |
(0.28) | (0.28) | (0.28) | (0.28) | (0.29) | (0.30) | (0.28) | (0.28) | (0.28) | (0.28) | (0.28) | (0.28) | (0.28) | (0.28) | |
psi(Burn.intensity.Canopy) | 0.71 | 1.04 | 0.43 | |||||||||||
(0.36) | (0.69) | (0.49) | ||||||||||||
psi(Burn.intensity.soil) | 0.68* | 1.11 | ||||||||||||
(0.34) | (0.71) | |||||||||||||
psi(fire_dist) | -0.65* | -0.61 | -1.70 | -0.57 | -1.46 | -0.58 | -1.41 | -0.35 | -1.35 | -0.35 | ||||
(0.32) | (0.33) | (1.04) | (0.33) | (0.99) | (0.32) | (0.98) | (0.44) | (0.97) | (0.45) | |||||
psi(I(Burn.intensity.soil^2)) | 0.81 | 1.08 | 0.79 | |||||||||||
(0.69) | (0.83) | (0.50) | ||||||||||||
psi(forest_dist) | -1.22 | -1.63 | -1.61 | -1.69 | ||||||||||
(1.04) | (1.15) | (1.15) | (1.19) | |||||||||||
psi(I(Burn.intensity.basal^2)) | 0.41 | |||||||||||||
(0.41) | ||||||||||||||
psi(I(Burn.intensity.Canopy^2)) | 0.40 | |||||||||||||
(0.43) | ||||||||||||||
Log Likelihood | -76.15 | -76.23 | -76.27 | -76.32 | -75.16 | -74.22 | -75.67 | -74.44 | -75.74 | -76.95 | -74.58 | -75.84 | -74.65 | -75.92 |
AICc | 158.84 | 159.00 | 159.07 | 159.18 | 159.23 | 159.83 | 160.24 | 160.28 | 160.38 | 160.43 | 160.55 | 160.58 | 160.70 | 160.76 |
Delta | 0.00 | 0.16 | 0.23 | 0.35 | 0.40 | 1.00 | 1.41 | 1.44 | 1.55 | 1.59 | 1.72 | 1.74 | 1.86 | 1.92 |
Weight | 0.12 | 0.11 | 0.10 | 0.10 | 0.10 | 0.07 | 0.06 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | Model 13 | Model 14 | Model 15 | Model 16 | Model 17 | Model 18 | Model 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
psi(Int) | 1.91* | 1.66** | 1.78* | 1.36** | 1.68** | 1.72* | 1.65** | 1.62** | 1.94* | 1.30** | 1.78* | 1.60** | 1.47** | 1.35** | 1.92* | 1.69* | 1.73* | 1.31** | 1.62** |
(0.81) | (0.64) | (0.71) | (0.45) | (0.64) | (0.67) | (0.62) | (0.60) | (0.85) | (0.42) | (0.73) | (0.61) | (0.49) | (0.44) | (0.84) | (0.66) | (0.68) | (0.42) | (0.61) | |
p(Int) | 0.15 | 0.22 | 0.19 | 0.38 | 0.23 | 0.21 | 0.23 | 0.25 | 0.14 | 0.40 | 0.20 | 0.24 | 0.33 | 0.40 | 0.15 | 0.23 | 0.22 | 0.41 | 0.26 |
(0.25) | (0.25) | (0.25) | (0.23) | (0.25) | (0.25) | (0.26) | (0.25) | (0.26) | (0.23) | (0.26) | (0.26) | (0.24) | (0.24) | (0.26) | (0.26) | (0.26) | (0.23) | (0.26) | |
p(Maxtemp) | 0.67 | 0.36 | -0.45 | 0.65 | 0.34 | -0.47 | |||||||||||||
(0.36) | (0.27) | (0.29) | (0.38) | (0.27) | (0.30) | ||||||||||||||
p(Meantemp) | -0.98* | -0.43 | -0.43 | -0.38 | -0.96* | ||||||||||||||
(0.40) | (0.24) | (0.25) | (0.24) | (0.42) | |||||||||||||||
p(Mintemp) | -0.45 | -0.39 | -0.69* | -0.45 | -0.56* | -0.41 | -0.69* | ||||||||||||
(0.23) | (0.24) | (0.30) | (0.24) | (0.25) | (0.25) | (0.32) | |||||||||||||
p(sdtemp) | 0.42 | 0.38 | 0.31 | 0.69* | 0.42 | 0.46 | 0.35 | 0.29 | 0.69* | ||||||||||
(0.23) | (0.22) | (0.23) | (0.31) | (0.24) | (0.24) | (0.23) | (0.23) | (0.32) | |||||||||||
p(Julian) | -0.28 | -0.23 | -0.26 | -0.20 | -0.26 | -0.25 | -0.30 | -0.27 | |||||||||||
(0.21) | (0.21) | (0.22) | (0.21) | (0.21) | (0.21) | (0.21) | (0.22) | ||||||||||||
p(Meanhum) | 1.84* | 0.26 | |||||||||||||||||
(0.84) | (0.21) | ||||||||||||||||||
p(Minhum) | -2.22* | ||||||||||||||||||
(0.96) | |||||||||||||||||||
p(sdhum) | -0.93* | ||||||||||||||||||
(0.47) | |||||||||||||||||||
Log Likelihood | -92.53 | -93.76 | -92.58 | -94.00 | -92.83 | -92.84 | -92.89 | -92.90 | -90.63 | -95.52 | -91.96 | -94.40 | -93.28 | -93.28 | -92.06 | -92.09 | -92.11 | -94.56 | -92.14 |
AICc | 193.97 | 194.05 | 194.08 | 194.53 | 194.57 | 194.59 | 194.69 | 194.71 | 195.26 | 195.31 | 195.32 | 195.33 | 195.47 | 195.47 | 195.52 | 195.57 | 195.61 | 195.65 | 195.67 |
Delta | 0.00 | 0.08 | 0.10 | 0.56 | 0.60 | 0.62 | 0.71 | 0.74 | 1.29 | 1.33 | 1.34 | 1.35 | 1.49 | 1.50 | 1.55 | 1.60 | 1.64 | 1.67 | 1.70 |
Weight | 0.09 | 0.08 | 0.08 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | |
---|---|---|---|---|---|---|---|---|---|---|
psi(Int) | 0.40 | 0.56 | 0.65 | 0.46 | 0.57 | 0.65 | 0.46 | 0.43 | 0.52 | 0.60 |
(0.34) | (0.41) | (0.43) | (0.36) | (0.38) | (0.44) | (0.36) | (0.35) | (0.36) | (0.42) | |
p(Int) | 0.28 | 0.09 | 0.02 | 0.21 | 0.13 | 0.01 | 0.20 | 0.24 | 0.23 | 0.06 |
(0.27) | (0.30) | (0.30) | (0.28) | (0.29) | (0.31) | (0.29) | (0.28) | (0.29) | (0.31) | |
p(Julian) | -0.39 | -0.42 | -0.53* | -0.40 | -0.56* | -0.38 | ||||
(0.26) | (0.25) | (0.26) | (0.25) | (0.27) | (0.26) | |||||
p(Maxhum) | 0.35 | 0.31 | 1.66 | 3.82* | ||||||
(0.23) | (0.25) | (1.00) | (1.90) | |||||||
p(Meanhum) | -1.28 | 0.25 | 0.23 | -3.36 | ||||||
(0.96) | (0.22) | (0.23) | (1.83) | |||||||
p(Minhum) | 0.19 | 0.18 | ||||||||
(0.23) | (0.22) | |||||||||
p(sdhum) | -0.70 | |||||||||
(0.52) | ||||||||||
Log Likelihood | -84.33 | -83.27 | -82.15 | -83.54 | -81.25 | -82.63 | -83.82 | -83.97 | -80.32 | -82.94 |
AICc | 172.93 | 173.07 | 173.21 | 173.62 | 173.90 | 174.17 | 174.17 | 174.47 | 174.65 | 174.79 |
Delta | 0.00 | 0.14 | 0.28 | 0.69 | 0.97 | 1.24 | 1.24 | 1.54 | 1.72 | 1.86 |
Weight | 0.15 | 0.14 | 0.13 | 0.11 | 0.10 | 0.08 | 0.08 | 0.07 | 0.07 | 0.06 |
Num. obs. | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
---|---|---|---|---|---|
psi(Int) | 6.01 | 7.72 | 6.82 | 6.64 | 7.66 |
(48.06) | (83.65) | (51.51) | (51.34) | (78.44) | |
p(Int) | -4.48*** | -4.19*** | -3.96*** | -4.66*** | -4.39*** |
(1.01) | (0.84) | (0.70) | (1.18) | (0.94) | |
p(Minhum) | -1.73 | -2.06 | |||
(1.02) | (1.23) | ||||
p(Meanhum) | -1.24 | -1.26 | |||
(0.74) | (0.77) | ||||
p(Maxhum) | -0.92 | ||||
(0.55) | |||||
p(sdhum) | -0.39 | ||||
(0.53) | |||||
p(sdtemp) | 0.59 | ||||
(0.54) | |||||
Log Likelihood | -16.03 | -16.35 | -16.74 | -15.70 | -15.77 |
AICc | 38.59 | 39.24 | 40.02 | 40.31 | 40.44 |
Delta | 0.00 | 0.65 | 1.43 | 1.72 | 1.85 |
Weight | 0.33 | 0.24 | 0.16 | 0.14 | 0.13 |
Num. obs. | 49 | 49 | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
psi(Int) | -1.18 | -1.04 | -1.03 |
(1.07) | (1.04) | (1.10) | |
p(Int) | -1.54 | -1.76 | -1.76 |
(1.04) | (0.98) | (1.04) | |
p(Mintemp) | -0.57 | ||
(0.62) | |||
p(Meantemp) | -0.47 | ||
(0.52) | |||
Log Likelihood | -24.15 | -23.69 | -23.73 |
AICc | 52.56 | 53.90 | 53.99 |
Delta | 0.00 | 1.35 | 1.44 |
Weight | 0.50 | 0.26 | 0.24 |
Num. obs. | 49 | 49 | 49 |
p < 0.001, p < 0.01, p < 0.05 |
doing row 1000 of 108500 doing row 2000 of 108500 doing row 3000 of 108500 doing row 4000 of 108500 doing row 5000 of 108500 doing row 6000 of 108500 doing row 7000 of 108500 doing row 8000 of 108500 doing row 9000 of 108500 doing row 10000 of 108500 doing row 11000 of 108500 doing row 12000 of 108500 doing row 13000 of 108500 doing row 14000 of 108500 doing row 15000 of 108500 doing row 16000 of 108500 doing row 17000 of 108500 doing row 18000 of 108500 doing row 19000 of 108500 doing row 20000 of 108500 doing row 21000 of 108500 doing row 22000 of 108500 doing row 23000 of 108500 doing row 24000 of 108500 doing row 25000 of 108500 doing row 26000 of 108500 doing row 27000 of 108500 doing row 28000 of 108500 doing row 29000 of 108500 doing row 30000 of 108500 doing row 31000 of 108500 doing row 32000 of 108500 doing row 33000 of 108500 doing row 34000 of 108500 doing row 35000 of 108500 doing row 36000 of 108500 doing row 37000 of 108500 doing row 38000 of 108500 doing row 39000 of 108500 doing row 40000 of 108500 doing row 41000 of 108500 doing row 42000 of 108500 doing row 43000 of 108500 doing row 44000 of 108500 doing row 45000 of 108500 doing row 46000 of 108500 doing row 47000 of 108500 doing row 48000 of 108500 doing row 49000 of 108500 doing row 50000 of 108500 doing row 51000 of 108500 doing row 52000 of 108500 doing row 53000 of 108500 doing row 54000 of 108500 doing row 55000 of 108500 doing row 56000 of 108500 doing row 57000 of 108500 doing row 58000 of 108500 doing row 59000 of 108500 doing row 60000 of 108500 doing row 61000 of 108500 doing row 62000 of 108500 doing row 63000 of 108500 doing row 64000 of 108500 doing row 65000 of 108500 doing row 66000 of 108500 doing row 67000 of 108500 doing row 68000 of 108500 doing row 69000 of 108500 doing row 70000 of 108500 doing row 71000 of 108500 doing row 72000 of 108500 doing row 73000 of 108500 doing row 74000 of 108500 doing row 75000 of 108500 doing row 76000 of 108500 doing row 77000 of 108500 doing row 78000 of 108500 doing row 79000 of 108500 doing row 80000 of 108500 doing row 81000 of 108500 doing row 82000 of 108500 doing row 83000 of 108500 doing row 84000 of 108500 doing row 85000 of 108500 doing row 86000 of 108500 doing row 87000 of 108500 doing row 88000 of 108500 doing row 89000 of 108500 doing row 90000 of 108500 doing row 91000 of 108500 doing row 92000 of 108500 doing row 93000 of 108500 doing row 94000 of 108500 doing row 95000 of 108500 doing row 96000 of 108500 doing row 97000 of 108500 doing row 98000 of 108500 doing row 99000 of 108500 doing row 100000 of 108500 doing row 101000 of 108500 doing row 102000 of 108500 doing row 103000 of 108500 doing row 104000 of 108500 doing row 105000 of 108500 doing row 106000 of 108500 doing row 107000 of 108500 doing row 108000 of 108500
MYYU | MYCA | MICI | MYVO | MYLU | LABL | MYEV | ANPA | MYTH | COTO | PAHE | EPFU | LANO | TABR | LACI | EUMA | EUPE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1746977 | 0.6187110 | 0.0523755 | 0.4020923 | 0.1814072 | 1.0000000 | 0.6074240 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1056724 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0002035 | 0.0010027 |
1.0000000 | 0.6476518 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.1417360 | 0.0000000 | 0.2467996 | 0.0000262 | 0.8744714 | 0.4065435 | 0.7122902 | 0.5987302 | 1.0000000 | 1.0000000 |
0.1746977 | 0.6187110 | 0.0543530 | 0.4020923 | 0.1854588 | 1.0000000 | 0.6155645 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1129229 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0004526 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0836853 | 0.4020923 | 0.2386986 | 1.0000000 | 0.7060096 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.2350532 | 0.3976295 | 0.6932020 | 0.5987302 | 0.8526811 | 0.0010027 |
1.0000000 | 0.9005471 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0009523 | 0.9409064 | 0.2914249 | 1.0000000 | 0.3854519 | 0.3559797 | 0.7230384 | 0.7541266 | 0.9900645 | 0.5987302 | 1.0000000 | 1.0000000 |
0.3635506 | 0.6200561 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.1488006 | 0.5059076 | 0.0551907 | 0.0000000 | 0.9470735 | 0.3984167 | 0.6949216 | 0.5987302 | 1.0000000 | 0.0000199 |
0.9999994 | 0.9146396 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9977640 | 0.9409064 | 0.4115917 | 0.9998384 | 0.3599207 | 0.0938242 | 0.8931081 | 0.7844351 | 0.9934588 | 0.5987302 | 1.0000000 | 1.0000000 |
0.1746977 | 0.6187110 | 0.0518274 | 0.4020923 | 0.1802711 | 1.0000000 | 0.6051050 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1036929 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0001623 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0731587 | 0.4020923 | 0.2208694 | 1.0000000 | 0.6788340 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1888414 | 0.3976295 | 0.6932020 | 0.5987302 | 0.2274919 | 0.0010027 |
1.0000000 | 0.8397064 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.0967128 | 1.0000000 | 0.2754353 | 0.0002558 | 0.2403815 | 0.5645056 | 0.9226269 | 0.5987302 | 0.0000000 | 0.0000002 |
0.1746977 | 0.6187110 | 0.0751250 | 0.4020923 | 0.2242944 | 1.0000000 | 0.6842758 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1973338 | 0.3976295 | 0.6932020 | 0.5987302 | 0.3457951 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0658899 | 0.4020923 | 0.2077879 | 1.0000000 | 0.6570073 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1582155 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0287791 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0641996 | 0.4020923 | 0.2046441 | 1.0000000 | 0.6515040 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1512973 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0165205 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0444506 | 0.4020923 | 0.1643850 | 1.0000000 | 0.5709207 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.0784362 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0000060 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0676257 | 0.4020923 | 0.2109749 | 1.0000000 | 0.6624818 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1654060 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0497388 | 0.0010027 |
1.0000000 | 0.8973325 | 0.4422312 | 0.4020923 | 0.5826017 | 0.1515941 | 0.9409064 | 0.3385960 | 1.0000000 | 0.2869110 | 0.0006107 | 0.6782625 | 0.7675747 | 0.9917059 | 0.5987302 | 1.0000000 | 1.0000000 |
1.0000000 | 0.9048351 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9723134 | 0.9409064 | 0.3876448 | 0.9999995 | 0.4365624 | 0.9338712 | 0.7810998 | 0.7793024 | 0.9929586 | 0.5987302 | 1.0000000 | 1.0000000 |
1.0000000 | 0.8349757 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1012291 | 1.0000000 | 0.2753032 | 0.0002532 | 0.2317935 | 0.5922719 | 0.9404390 | 0.5987302 | 0.0337443 | 0.0000000 |
0.1746977 | 0.6187110 | 0.0818469 | 0.4020923 | 0.2356713 | 1.0000000 | 0.7015910 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.2268686 | 0.3976295 | 0.6932020 | 0.5987302 | 0.7792485 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0836827 | 0.4020923 | 0.2386943 | 1.0000000 | 0.7060034 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.2350415 | 0.3976295 | 0.6932020 | 0.5987302 | 0.8525931 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0863798 | 0.4020923 | 0.2430748 | 1.0000000 | 0.7122625 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.2471107 | 0.3976295 | 0.6932020 | 0.5987302 | 0.9215102 | 0.0010027 |
1.0000000 | 0.7085289 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9999994 | 0.9409064 | 0.1277455 | 1.0000000 | 0.0551907 | 0.0000000 | 0.5497607 | 0.4258041 | 0.7506282 | 0.5987302 | 0.9997273 | 0.0000000 |
1.0000000 | 0.8311463 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.0997119 | 1.0000000 | 0.3768551 | 0.2401771 | 0.2264190 | 0.5851544 | 0.9362483 | 0.5987302 | 0.0000037 | 0.0004466 |
0.0018331 | 0.9237512 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.7039228 | 0.0000493 | 0.3871204 | 0.3810857 | 0.9578770 | 0.8334665 | 0.9970076 | 0.5987302 | 1.0000000 | 1.0000000 |
1.0000000 | 0.7879798 | 0.4422312 | 0.4020923 | 0.5826017 | 0.3523369 | 0.9409064 | 0.1073739 | 1.0000000 | 0.2981489 | 0.0014033 | 0.2370232 | 0.4685517 | 0.8217859 | 0.5987302 | 0.0000000 | 0.0000000 |
1.0000000 | 0.7960210 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1095783 | 1.0000000 | 0.2753889 | 0.0002549 | 0.2265655 | 0.6192454 | 0.9542550 | 0.5987302 | 0.0000000 | 0.0000000 |
0.1746977 | 0.6187110 | 0.1158468 | 0.4020923 | 0.2869106 | 1.0000000 | 0.7670987 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.3791561 | 0.3976295 | 0.6932020 | 0.5987302 | 0.9998912 | 0.0010027 |
1.0000000 | 0.8755249 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1314345 | 1.0000000 | 0.3036230 | 0.0020900 | 0.4177111 | 0.6586659 | 0.9695099 | 0.5987302 | 1.0000000 | 1.0000000 |
1.0000000 | 0.8399901 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1220371 | 1.0000000 | 0.4365701 | 0.9339010 | 0.2409707 | 0.6446129 | 0.9646604 | 0.5987302 | 0.7358133 | 1.0000000 |
1.0000000 | 0.6653628 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9784777 | 0.9409064 | 0.1125850 | 0.0001793 | 0.2618582 | 0.0000887 | 0.7996825 | 0.4547887 | 0.8009078 | 0.5987302 | 0.0000223 | 0.9556542 |
1.0000000 | 0.8121585 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.0993910 | 1.0000000 | 0.2468212 | 0.0000263 | 0.2167144 | 0.5834719 | 0.9352215 | 0.5987302 | 0.0000000 | 0.0000000 |
0.0018331 | 0.9237512 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.7039228 | 0.0008456 | 0.3586216 | 0.0867211 | 0.9578770 | 0.8334665 | 0.9970076 | 0.5987302 | 1.0000000 | 1.0000000 |
0.0018331 | 0.9237512 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.5498409 | 0.0041817 | 0.3429812 | 0.0320618 | 0.9578770 | 0.8095039 | 0.9955277 | 0.5987302 | 1.0000000 | 1.0000000 |
0.1746977 | 0.6187110 | 0.1034343 | 0.4020923 | 0.2692606 | 1.0000000 | 0.7466076 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.3240252 | 0.3976295 | 0.6932020 | 0.5987302 | 0.9985389 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0590864 | 0.4020923 | 0.1948766 | 1.0000000 | 0.6337278 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1309286 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0027524 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0539222 | 0.4020923 | 0.1845823 | 1.0000000 | 0.6138204 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1113290 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0003812 | 0.0010027 |
1.0000000 | 0.8903901 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9999924 | 0.9409064 | 0.4654106 | 1.0000000 | 0.3940734 | 0.4907412 | 0.5835882 | 0.7949456 | 0.9943985 | 0.5987302 | 1.0000000 | 1.0000000 |
1.0000000 | 0.6791887 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9429683 | 0.9409064 | 0.1113328 | 0.0008141 | 0.3312244 | 0.0145679 | 0.7265785 | 0.4578345 | 0.8056894 | 0.5987302 | 0.0000550 | 0.1306175 |
1.0000000 | 0.8799388 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1321769 | 1.0000000 | 0.3816957 | 0.3022853 | 0.4603419 | 0.6596567 | 0.9698296 | 0.5987302 | 0.0000001 | 1.0000000 |
1.0000000 | 0.8159064 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0657280 | 0.9409064 | 0.1052080 | 1.0000000 | 0.3501545 | 0.0510865 | 0.2166557 | 0.4753332 | 0.8313988 | 0.5987302 | 0.0000000 | 0.0000000 |
0.1746977 | 0.6187110 | 0.0480083 | 0.4020923 | 0.1721909 | 1.0000000 | 0.5881360 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.0902845 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0000313 | 0.0010027 |
0.0018331 | 0.9237512 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.7039228 | 0.0000184 | 0.3971847 | 0.5405300 | 0.9578770 | 0.8334665 | 0.9970076 | 0.5987302 | 1.0000000 | 1.0000000 |
0.0077645 | 0.9231772 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.0958644 | 0.0041538 | 0.3540419 | 0.0653443 | 0.9549522 | 0.5526204 | 0.9137070 | 0.5987302 | 0.0000000 | 1.0000000 |
0.9960341 | 0.9188009 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.5933598 | 0.9937809 | 0.3297358 | 0.0131588 | 0.9276758 | 0.8164466 | 0.9960019 | 0.5987302 | 1.0000000 | 1.0000000 |
1.0000000 | 0.8694436 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1433548 | 1.0000000 | 0.3079292 | 0.0028504 | 0.3681800 | 0.6730078 | 0.9738727 | 0.5987302 | 1.0000000 | 1.0000000 |
1.0000000 | 0.7449864 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0008386 | 0.9409064 | 0.1010947 | 1.0000000 | 0.3782180 | 0.2567772 | 0.3585193 | 0.4911385 | 0.8521550 | 0.5987302 | 0.0000000 | 0.0000000 |
0.1746977 | 0.6187110 | 0.0464509 | 0.4020923 | 0.1688087 | 1.0000000 | 0.5807787 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.0850188 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0000154 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0601212 | 0.4020923 | 0.1968860 | 1.0000000 | 0.6374706 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1349784 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0040077 | 0.0010027 |
0.1746977 | 0.6187110 | 0.0660275 | 0.4020923 | 0.2080421 | 1.0000000 | 0.6574476 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1587823 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0300814 | 0.0010027 |
raster.values <- cbind.data.frame(RESULTS$ID, raster.values)
colnames(raster.values)<- c("ID", colnames(raster.values[,-1]))
kable(raster.values)
ID | MYYU | MYCA | MICI | MYVO | MYLU | LABL | MYEV | ANPA | MYTH | COTO | PAHE | EPFU | LANO | TABR | LACI | EUMA | EUPE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2NFS8 | 0.1746977 | 0.6187110 | 0.0523755 | 0.4020923 | 0.1814072 | 1.0000000 | 0.6074240 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1056724 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0002035 | 0.0010027 |
H2NFS5 | 1.0000000 | 0.6476518 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.1417360 | 0.0000000 | 0.2467996 | 0.0000262 | 0.8744714 | 0.4065435 | 0.7122902 | 0.5987302 | 1.0000000 | 1.0000000 |
H5NFS2 | 0.1746977 | 0.6187110 | 0.0543530 | 0.4020923 | 0.1854588 | 1.0000000 | 0.6155645 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1129229 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0004526 | 0.0010027 |
H5NFS6 | 0.1746977 | 0.6187110 | 0.0836853 | 0.4020923 | 0.2386986 | 1.0000000 | 0.7060096 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.2350532 | 0.3976295 | 0.6932020 | 0.5987302 | 0.8526811 | 0.0010027 |
IB10 | 1.0000000 | 0.9005471 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0009523 | 0.9409064 | 0.2914249 | 1.0000000 | 0.3854519 | 0.3559797 | 0.7230384 | 0.7541266 | 0.9900645 | 0.5987302 | 1.0000000 | 1.0000000 |
H2NFS9 | 0.3635506 | 0.6200561 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.1488006 | 0.5059076 | 0.0551907 | 0.0000000 | 0.9470735 | 0.3984167 | 0.6949216 | 0.5987302 | 1.0000000 | 0.0000199 |
H4FS8 | 0.9999994 | 0.9146396 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9977640 | 0.9409064 | 0.4115917 | 0.9998384 | 0.3599207 | 0.0938242 | 0.8931081 | 0.7844351 | 0.9934588 | 0.5987302 | 1.0000000 | 1.0000000 |
H4NFS1 | 0.1746977 | 0.6187110 | 0.0518274 | 0.4020923 | 0.1802711 | 1.0000000 | 0.6051050 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1036929 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0001623 | 0.0010027 |
H4NFS5 | 0.1746977 | 0.6187110 | 0.0731587 | 0.4020923 | 0.2208694 | 1.0000000 | 0.6788340 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1888414 | 0.3976295 | 0.6932020 | 0.5987302 | 0.2274919 | 0.0010027 |
H3FS8 | 1.0000000 | 0.8397064 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.0967128 | 1.0000000 | 0.2754353 | 0.0002558 | 0.2403815 | 0.5645056 | 0.9226269 | 0.5987302 | 0.0000000 | 0.0000002 |
H4NFS10 | 0.1746977 | 0.6187110 | 0.0751250 | 0.4020923 | 0.2242944 | 1.0000000 | 0.6842758 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1973338 | 0.3976295 | 0.6932020 | 0.5987302 | 0.3457951 | 0.0010027 |
H1NFS11 | 0.1746977 | 0.6187110 | 0.0658899 | 0.4020923 | 0.2077879 | 1.0000000 | 0.6570073 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1582155 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0287791 | 0.0010027 |
H4NFS9 | 0.1746977 | 0.6187110 | 0.0641996 | 0.4020923 | 0.2046441 | 1.0000000 | 0.6515040 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1512973 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0165205 | 0.0010027 |
H2NFS4 | 0.1746977 | 0.6187110 | 0.0444506 | 0.4020923 | 0.1643850 | 1.0000000 | 0.5709207 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.0784362 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0000060 | 0.0010027 |
H1NFS12 | 0.1746977 | 0.6187110 | 0.0676257 | 0.4020923 | 0.2109749 | 1.0000000 | 0.6624818 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1654060 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0497388 | 0.0010027 |
H5FS4 | 1.0000000 | 0.8973325 | 0.4422312 | 0.4020923 | 0.5826017 | 0.1515941 | 0.9409064 | 0.3385960 | 1.0000000 | 0.2869110 | 0.0006107 | 0.6782625 | 0.7675747 | 0.9917059 | 0.5987302 | 1.0000000 | 1.0000000 |
IB15 | 1.0000000 | 0.9048351 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9723134 | 0.9409064 | 0.3876448 | 0.9999995 | 0.4365624 | 0.9338712 | 0.7810998 | 0.7793024 | 0.9929586 | 0.5987302 | 1.0000000 | 1.0000000 |
H4FS11 | 1.0000000 | 0.8349757 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1012291 | 1.0000000 | 0.2753032 | 0.0002532 | 0.2317935 | 0.5922719 | 0.9404390 | 0.5987302 | 0.0337443 | 0.0000000 |
H3NFS1 | 0.1746977 | 0.6187110 | 0.0818469 | 0.4020923 | 0.2356713 | 1.0000000 | 0.7015910 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.2268686 | 0.3976295 | 0.6932020 | 0.5987302 | 0.7792485 | 0.0010027 |
H4NFS4 | 0.1746977 | 0.6187110 | 0.0836827 | 0.4020923 | 0.2386943 | 1.0000000 | 0.7060034 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.2350415 | 0.3976295 | 0.6932020 | 0.5987302 | 0.8525931 | 0.0010027 |
H1NFS9 | 0.1746977 | 0.6187110 | 0.0863798 | 0.4020923 | 0.2430748 | 1.0000000 | 0.7122625 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.2471107 | 0.3976295 | 0.6932020 | 0.5987302 | 0.9215102 | 0.0010027 |
OB4 | 1.0000000 | 0.7085289 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9999994 | 0.9409064 | 0.1277455 | 1.0000000 | 0.0551907 | 0.0000000 | 0.5497607 | 0.4258041 | 0.7506282 | 0.5987302 | 0.9997273 | 0.0000000 |
H3FS7 | 1.0000000 | 0.8311463 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.0997119 | 1.0000000 | 0.3768551 | 0.2401771 | 0.2264190 | 0.5851544 | 0.9362483 | 0.5987302 | 0.0000037 | 0.0004466 |
IB26 | 0.0018331 | 0.9237512 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.7039228 | 0.0000493 | 0.3871204 | 0.3810857 | 0.9578770 | 0.8334665 | 0.9970076 | 0.5987302 | 1.0000000 | 1.0000000 |
H1FS3 | 1.0000000 | 0.7879798 | 0.4422312 | 0.4020923 | 0.5826017 | 0.3523369 | 0.9409064 | 0.1073739 | 1.0000000 | 0.2981489 | 0.0014033 | 0.2370232 | 0.4685517 | 0.8217859 | 0.5987302 | 0.0000000 | 0.0000000 |
H2FS6 | 1.0000000 | 0.7960210 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1095783 | 1.0000000 | 0.2753889 | 0.0002549 | 0.2265655 | 0.6192454 | 0.9542550 | 0.5987302 | 0.0000000 | 0.0000000 |
H5NFS11 | 0.1746977 | 0.6187110 | 0.1158468 | 0.4020923 | 0.2869106 | 1.0000000 | 0.7670987 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.3791561 | 0.3976295 | 0.6932020 | 0.5987302 | 0.9998912 | 0.0010027 |
H5FS3 | 1.0000000 | 0.8755249 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1314345 | 1.0000000 | 0.3036230 | 0.0020900 | 0.4177111 | 0.6586659 | 0.9695099 | 0.5987302 | 1.0000000 | 1.0000000 |
IB27 | 1.0000000 | 0.8399901 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1220371 | 1.0000000 | 0.4365701 | 0.9339010 | 0.2409707 | 0.6446129 | 0.9646604 | 0.5987302 | 0.7358133 | 1.0000000 |
H5FS7 | 1.0000000 | 0.6653628 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9784777 | 0.9409064 | 0.1125850 | 0.0001793 | 0.2618582 | 0.0000887 | 0.7996825 | 0.4547887 | 0.8009078 | 0.5987302 | 0.0000223 | 0.9556542 |
H2FS12 | 1.0000000 | 0.8121585 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.0993910 | 1.0000000 | 0.2468212 | 0.0000263 | 0.2167144 | 0.5834719 | 0.9352215 | 0.5987302 | 0.0000000 | 0.0000000 |
H5FS12 | 0.0018331 | 0.9237512 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.7039228 | 0.0008456 | 0.3586216 | 0.0867211 | 0.9578770 | 0.8334665 | 0.9970076 | 0.5987302 | 1.0000000 | 1.0000000 |
H1FS8 | 0.0018331 | 0.9237512 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.5498409 | 0.0041817 | 0.3429812 | 0.0320618 | 0.9578770 | 0.8095039 | 0.9955277 | 0.5987302 | 1.0000000 | 1.0000000 |
H5NFS10 | 0.1746977 | 0.6187110 | 0.1034343 | 0.4020923 | 0.2692606 | 1.0000000 | 0.7466076 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.3240252 | 0.3976295 | 0.6932020 | 0.5987302 | 0.9985389 | 0.0010027 |
H3NFS9 | 0.1746977 | 0.6187110 | 0.0590864 | 0.4020923 | 0.1948766 | 1.0000000 | 0.6337278 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1309286 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0027524 | 0.0010027 |
H3NFS4 | 0.1746977 | 0.6187110 | 0.0539222 | 0.4020923 | 0.1845823 | 1.0000000 | 0.6138204 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1113290 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0003812 | 0.0010027 |
H3FS1 | 1.0000000 | 0.8903901 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9999924 | 0.9409064 | 0.4654106 | 1.0000000 | 0.3940734 | 0.4907412 | 0.5835882 | 0.7949456 | 0.9943985 | 0.5987302 | 1.0000000 | 1.0000000 |
H3FS12 | 1.0000000 | 0.6791887 | 0.4422312 | 0.4020923 | 0.5826017 | 0.9429683 | 0.9409064 | 0.1113328 | 0.0008141 | 0.3312244 | 0.0145679 | 0.7265785 | 0.4578345 | 0.8056894 | 0.5987302 | 0.0000550 | 0.1306175 |
H1FS5 | 1.0000000 | 0.8799388 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1321769 | 1.0000000 | 0.3816957 | 0.3022853 | 0.4603419 | 0.6596567 | 0.9698296 | 0.5987302 | 0.0000001 | 1.0000000 |
H1FS4 | 1.0000000 | 0.8159064 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0657280 | 0.9409064 | 0.1052080 | 1.0000000 | 0.3501545 | 0.0510865 | 0.2166557 | 0.4753332 | 0.8313988 | 0.5987302 | 0.0000000 | 0.0000000 |
H3NFS3 | 0.1746977 | 0.6187110 | 0.0480083 | 0.4020923 | 0.1721909 | 1.0000000 | 0.5881360 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.0902845 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0000313 | 0.0010027 |
H5FS10 | 0.0018331 | 0.9237512 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.7039228 | 0.0000184 | 0.3971847 | 0.5405300 | 0.9578770 | 0.8334665 | 0.9970076 | 0.5987302 | 1.0000000 | 1.0000000 |
H2FS5 | 0.0077645 | 0.9231772 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.0958644 | 0.0041538 | 0.3540419 | 0.0653443 | 0.9549522 | 0.5526204 | 0.9137070 | 0.5987302 | 0.0000000 | 1.0000000 |
H2FS2 | 0.9960341 | 0.9188009 | 0.4422312 | 0.4020923 | 0.5826017 | 1.0000000 | 0.9409064 | 0.5933598 | 0.9937809 | 0.3297358 | 0.0131588 | 0.9276758 | 0.8164466 | 0.9960019 | 0.5987302 | 1.0000000 | 1.0000000 |
H4FS9 | 1.0000000 | 0.8694436 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0000000 | 0.9409064 | 0.1433548 | 1.0000000 | 0.3079292 | 0.0028504 | 0.3681800 | 0.6730078 | 0.9738727 | 0.5987302 | 1.0000000 | 1.0000000 |
H4FS1 | 1.0000000 | 0.7449864 | 0.4422312 | 0.4020923 | 0.5826017 | 0.0008386 | 0.9409064 | 0.1010947 | 1.0000000 | 0.3782180 | 0.2567772 | 0.3585193 | 0.4911385 | 0.8521550 | 0.5987302 | 0.0000000 | 0.0000000 |
H3NFS10 | 0.1746977 | 0.6187110 | 0.0464509 | 0.4020923 | 0.1688087 | 1.0000000 | 0.5807787 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.0850188 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0000154 | 0.0010027 |
H2NFS6 | 0.1746977 | 0.6187110 | 0.0601212 | 0.4020923 | 0.1968860 | 1.0000000 | 0.6374706 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1349784 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0040077 | 0.0010027 |
H1NFS5 | 0.1746977 | 0.6187110 | 0.0660275 | 0.4020923 | 0.2080421 | 1.0000000 | 0.6574476 | 0.1495259 | 0.2619755 | 0.0551907 | 0.0000000 | 0.1587823 | 0.3976295 | 0.6932020 | 0.5987302 | 0.0300814 | 0.0010027 |
colnames(raster.values[,-1])
## [1] "MYYU" "MYCA" "MICI" "MYVO" "MYLU" "LABL" "MYEV" "ANPA" "MYTH" "COTO"
## [11] "PAHE" "EPFU" "LANO" "TABR" "LACI" "EUMA" "EUPE"
NoFireValues <- filter(raster.values, grepl('NF|OB', ID))
length(NoFireValues$ID)
## [1] 24
FireValues <- filter(raster.values, !grepl('NF|OB', ID))
length(FireValues$ID)
## [1] 25
summary(FireValues)
## ID MYYU MYCA MICI
## H1FS3 : 1 Min. :0.001833 Min. :0.6654 Min. :0.4422
## H1FS4 : 1 1st Qu.:0.999999 1st Qu.:0.8159 1st Qu.:0.4422
## H1FS5 : 1 Median :1.000000 Median :0.8755 Median :0.4422
## H1FS8 : 1 Mean :0.800445 Mean :0.8527 Mean :0.4422
## H2FS12 : 1 3rd Qu.:1.000000 3rd Qu.:0.9146 3rd Qu.:0.4422
## H2FS2 : 1 Max. :1.000000 Max. :0.9238 Max. :0.4422
## (Other):19
## MYVO MYLU LABL MYEV
## Min. :0.4021 Min. :0.5826 Min. :0.00000 Min. :0.9409
## 1st Qu.:0.4021 1st Qu.:0.5826 1st Qu.:0.00000 1st Qu.:0.9409
## Median :0.4021 Median :0.5826 Median :0.06573 Median :0.9409
## Mean :0.4021 Mean :0.5826 Mean :0.41852 Mean :0.9409
## 3rd Qu.:0.4021 3rd Qu.:0.5826 3rd Qu.:0.99776 3rd Qu.:0.9409
## Max. :0.4021 Max. :0.5826 Max. :1.00000 Max. :0.9409
##
## ANPA MYTH COTO
## Min. :0.09586 Min. :0.0000184 Min. :0.2468
## 1st Qu.:0.10521 1st Qu.:0.0041817 1st Qu.:0.2981
## Median :0.13143 Median :1.0000000 Median :0.3502
## Mean :0.27275 Mean :0.7201544 Mean :0.3413
## 3rd Qu.:0.41159 3rd Qu.:1.0000000 3rd Qu.:0.3817
## Max. :0.70392 Max. :1.0000000 Max. :0.4366
##
## PAHE EPFU LANO TABR
## Min. :0.0000263 Min. :0.2167 Min. :0.4548 Min. :0.8009
## 1st Qu.:0.0014033 1st Qu.:0.2404 1st Qu.:0.5645 1st Qu.:0.9226
## Median :0.0510865 Median :0.5836 Median :0.6587 Median :0.9695
## Mean :0.1919979 Mean :0.5736 Mean :0.6595 Mean :0.9415
## 3rd Qu.:0.3022853 3rd Qu.:0.8931 3rd Qu.:0.7844 3rd Qu.:0.9935
## Max. :0.9339010 Max. :0.9579 Max. :0.8335 Max. :0.9970
##
## LACI EUMA EUPE
## Min. :0.5987 Min. :0.0000 Min. :0.0000000
## 1st Qu.:0.5987 1st Qu.:0.0000 1st Qu.:0.0000002
## Median :0.5987 Median :0.7358 Median :1.0000000
## Mean :0.5987 Mean :0.5108 Mean :0.6434687
## 3rd Qu.:0.5987 3rd Qu.:1.0000 3rd Qu.:1.0000000
## Max. :0.5987 Max. :1.0000 Max. :1.0000000
##
summary(NoFireValues)
## ID MYYU MYCA MICI
## H1NFS11: 1 Min. :0.1747 Min. :0.6187 Min. :0.04445
## H1NFS12: 1 1st Qu.:0.1747 1st Qu.:0.6187 1st Qu.:0.05425
## H1NFS5 : 1 Median :0.1747 Median :0.6187 Median :0.06683
## H1NFS9 : 1 Mean :0.2513 Mean :0.6237 Mean :0.11517
## H2NFS4 : 1 3rd Qu.:0.1747 3rd Qu.:0.6187 3rd Qu.:0.08436
## H2NFS5 : 1 Max. :1.0000 Max. :0.7085 Max. :0.44223
## (Other):18
## MYVO MYLU LABL MYEV
## Min. :0.4021 Min. :0.1644 Min. :1 Min. :0.5709
## 1st Qu.:0.4021 1st Qu.:0.1852 1st Qu.:1 1st Qu.:0.6151
## Median :0.4021 Median :0.2095 Median :1 Median :0.6600
## Mean :0.4021 Mean :0.2569 Mean :1 Mean :0.6919
## 3rd Qu.:0.4021 3rd Qu.:0.2398 3rd Qu.:1 3rd Qu.:0.7076
## Max. :0.4021 Max. :0.5826 Max. :1 Max. :0.9409
##
## ANPA MYTH COTO PAHE
## Min. :0.1277 Min. :0.000 Min. :0.05519 Min. :0.000e+00
## 1st Qu.:0.1495 1st Qu.:0.262 1st Qu.:0.05519 1st Qu.:0.000e+00
## Median :0.1495 Median :0.262 Median :0.05519 Median :0.000e+00
## Mean :0.1483 Mean :0.292 Mean :0.06317 Mean :1.093e-06
## 3rd Qu.:0.1495 3rd Qu.:0.262 3rd Qu.:0.05519 3rd Qu.:0.000e+00
## Max. :0.1495 Max. :1.000 Max. :0.24680 Max. :2.623e-05
##
## EPFU LANO TABR LACI
## Min. :0.07844 Min. :0.3976 Min. :0.6932 Min. :0.5987
## 1st Qu.:0.11252 1st Qu.:0.3976 1st Qu.:0.6932 1st Qu.:0.5987
## Median :0.16209 Median :0.3976 Median :0.6932 Median :0.5987
## Mean :0.24965 Mean :0.3992 Mean :0.6965 Mean :0.5987
## 3rd Qu.:0.23807 3rd Qu.:0.3976 3rd Qu.:0.6932 3rd Qu.:0.5987
## Max. :0.94707 Max. :0.4258 Max. :0.7506 Max. :0.5987
##
## EUMA EUPE
## Min. :0.0000060 Min. :0.000000
## 1st Qu.:0.0004347 1st Qu.:0.001003
## Median :0.0399101 Median :0.001003
## Mean :0.3796087 Mean :0.042545
## 3rd Qu.:0.8698884 3rd Qu.:0.001003
## Max. :1.0000000 Max. :1.000000
##
myyuF<- FireValues[,2]
myyuNF<-NoFireValues[,2]
myyuT <- t.test(myyuF,myyuNF)
mycaF <- FireValues[,3]
mycaNF <-NoFireValues[,3]
mycaT <- t.test(mycaF,mycaNF)
myciF<- FireValues[,4]
myciNF<-NoFireValues[,4]
myciT <- t.test(myciF,myciNF)
myluF<- FireValues[,6]
myluNF<-NoFireValues[,6]
myluT <- t.test(myluF,myluNF)
lablF<- FireValues[,7]
lablNF<-NoFireValues[,7]
lablT <- t.test(lablF,lablNF)
myevF<- FireValues[,8]
myevNF<-NoFireValues[,8]
myevT<- t.test(myevF,myevNF)
anpaF<- FireValues[,9]
anpaNF<-NoFireValues[,9]
anpaT <- t.test(anpaF,anpaNF)
mythF<- FireValues[,10]
mythNF<-NoFireValues[,10]
mythT <- t.test(mythF,mythNF)
cotoF<- FireValues[,11]
cotoNF<-NoFireValues[,11]
cotoT <- t.test(cotoF,cotoNF)
paheF<- FireValues[,12]
paheNF<-NoFireValues[,12]
paheT <- t.test(paheF,paheNF)
epfuF<- FireValues[,13]
epfuNF<-NoFireValues[,13]
epfuT <- t.test(epfuF,epfuNF)
lanoF<- FireValues[,14]
lanoNF<-NoFireValues[,14]
lanoT <- t.test(lanoF,lanoNF)
tabrF<- FireValues[,15]
tabrNF<-NoFireValues[,15]
tabraT <- t.test(tabrF,tabrNF)
eumaF<- FireValues[,17]
eumaNF<-NoFireValues[,17]
eumaT<- t.test(eumaF,eumaNF)
eupeF<- FireValues[,18]
eupeNF<-NoFireValues[,18]
eupeT <- t.test(eupeF,eupeNF)
eupeT$statistic
## t
## 5.721444
eupeT$parameter
## df
## 32.59786
eupeT$p.value
## [1] 2.285563e-06
eupeT$conf.int
## [1] 0.3871383 0.8147095
## attr(,"conf.level")
## [1] 0.95
eupeT$conf.int[1]
## [1] 0.3871383
eupeT$estimate
## mean of x mean of y
## 0.64346874 0.04254482
eupeT$estimate[1]- eupeT$estimate[2]
## mean of x
## 0.6009239
testT <- data.frame(Species = c("MYYU", "MYCA", "MICI","MYLU", "LABL", "MYEV", "ANPA", "MYTH", "COTO" ,"PAHE" ,"EPFU", "LANO", "TABRA", "EUMA", "EUPE"),
t = c(myyuT$statistic, mycaT$statistic, myciT$statistic, myluT$statistic, lablT$statistic, myevT$statistic, anpaT$statistic, mythT$statistic, cotoT$statistic, paheT$statistic, epfuT$statistic, lanoT$statistic,tabraT$statistic, eumaT$statistic, eumaT$statistic),
pvalue = c(myyuT$p.value, mycaT$p.value, myciT$p.value, myluT$p.value, lablT$p.value, myevT$p.value, anpaT$p.value, mythT$p.value, cotoT$p.value, paheT$p.value, epfuT$p.value, lanoT$p.value, tabraT$p.value, eumaT$p.value, eupeT$p.value),
Difference = c((myyuT$estimate[1]- myyuT$estimate[2]), (mycaT$estimate[1]- mycaT$estimate[2]), (myciT$estimate[1]- myciT$estimate[2]), (myluT$estimate[1]- myluT$estimate[2]), (lablT$estimate[1]- lablT$estimate[2]), (myevT$estimate[1]- myevT$estimate[2]), (anpaT$estimate[1]- anpaT$estimate[2]), (mythT$estimate[1]- mythT$estimate[2]), (cotoT$estimate[1]- cotoT$estimate[2]), (paheT$estimate[1]- paheT$estimate[2]), (epfuT$estimate[1]- epfuT$estimate[2]), (lanoT$estimate[1]- lanoT$estimate[2]), (tabraT$estimate[1]- tabraT$estimate[2]), (eumaT$estimate[1]- eumaT$estimate[2]),(eupeT$estimate[1]- eupeT$estimate[2])),
row.names = NULL)
kable(testT)
Species | t | pvalue | Difference |
---|---|---|---|
MYYU | 5.8201734 | 0.0000010 | 0.5491034 |
MYCA | 14.9537508 | 0.0000000 | 0.2289669 |
MICI | 12.5672956 | 0.0000000 | 0.3270565 |
MYLU | 12.3255185 | 0.0000000 | 0.3257019 |
LABL | -6.0405066 | 0.0000031 | -0.5814813 |
MYEV | 11.2278931 | 0.0000000 | 0.2489568 |
ANPA | 2.7763900 | 0.0104829 | 0.1244853 |
MYTH | 4.3816713 | 0.0001280 | 0.4281797 |
COTO | 20.7894533 | 0.0000000 | 0.2780988 |
PAHE | 3.4416329 | 0.0021280 | 0.1919968 |
EPFU | 4.2342991 | 0.0001125 | 0.3239766 |
LANO | 9.7532730 | 0.0000000 | 0.2602961 |
TABRA | 18.1764086 | 0.0000000 | 0.2450361 |
EUMA | 0.9667779 | 0.3386269 | 0.1311768 |
EUPE | 0.9667779 | 0.0000023 | 0.6009239 |
write.csv(testT, "testT.csv")
#
# br<-cbind.data.frame(myyu,myci, mylu, labl, myev, anpa, coto, epfu, lano, tabr, eupe)
# par(las = 2)
# boxplot(br, outline=FALSE, cex= 0.8, ylab="Difference from unburned occupancy")
# abline(h=0)
# library(vioplot)
# vioplot(myyu,myci, mylu, labl, myev, anpa, coto, epfu, lano, tabr, eupe, col="grey")
#valuetable <- getValues(AllLayers2)
#km1 <- kmeans(na.omit(valuetable), centers = 5, iter.max = 100, nstart = 10)
# create a blank raster with default values of 0
#rNA <- setValues(raster(AllLayers2), 0)
#for(i in 1:nlayers(AllLayers2)){
#rNA[is.na(AllLayers2[[i]])] <- 1
#}
# convert rNA to an integer vector
#rNA <- getValues(rNA)
# convert valuetable to a data.frame
#valuetable <- as.data.frame(valuetable)
# if rNA is a 0, assign the cluster value at that position
#valuetable$class[rNA==0] <- km1$cluster
# if rNA is a 1, assign an NA at that position
#valuetable$class[rNA==1] <- NA
# create a blank raster
#classes1 <- raster(AllLayers2)
# assign values from the 'class' column of valuetable
#classes1 <- setValues(classes1, valuetable$class)
#plot(classes1, legend=TRUE, colNA="black")
#More info on how to do this clasification in *https://geoscripting-wur.github.io/AdvancedRasterAnalysis/*
# best2.My.Yu2
#
# summary(best2.My.Yu2)
#
# names(best2.My.Yu2)
#
# getP(best2.My.Yu2)
#
# best2.My.Yu2['state']
#
# coef(best2.My.Yu2, type='state')
#
# # Variance-covariance matrix
# vcov(best2.My.Yu2, type='state')
#
# # Confidence intervals using profiled likelihood
# confint(best2.My.Yu2, type='state', method='profile')
#
# # Expected values
# fitted(best2.My.Yu2)
#
# logLik(best2.My.Yu2)
#
#
#
# # Predicted abundance at specified covariate values
#
#
# # Assess goodness-of-fit
# parboot(best2.My.Yu2)
# plot(best2.My.Yu2)
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 36 35.64 0.00
## 001 0 1 3.27 1.58
## 010 0 2 3.27 0.50
## 100 0 7 3.27 4.24
## 110 0 1 0.78 0.06
## 111 0 1 0.19 3.53
## 0NANA 1 1 1.00 0.00
##
## Chi-square statistic = 11.4753
## Number of bootstrap samples = 5000
## P-value = 0.0636
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.31 3.29 5.02 7.24 49.82
##
## Estimate of c-hat = 2
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 36 35.6446 0.0035
## 001 0 1 3.2732 1.5787
## 010 0 2 3.2732 0.4953
## 100 0 7 3.2732 4.2432
## 110 0 1 0.7828 0.0602
## 111 0 1 0.1872 3.5283
## 0NANA 1 1 0.9996 0.0000
##
## Chi-square statistic = 11.4753
## Number of bootstrap samples = 5000
## P-value = 0.0636
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.3101 3.2927 5.0179 7.2355 49.8200
##
## Estimate of c-hat = 1.9961
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 14 13.90 0.00
## 001 0 1 2.31 0.74
## 010 0 4 2.03 1.90
## 011 0 3 4.88 0.72
## 100 0 5 2.11 3.97
## 101 0 2 4.38 1.29
## 110 0 3 4.60 0.56
## 111 0 16 13.80 0.35
## 1NANA 1 1 0.59 0.28
##
## Chi-square statistic = 10.2136
## Number of bootstrap samples = 5000
## P-value = 0.105
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.5 3.9 5.6 7.8 22.0
##
## Estimate of c-hat = 1.66
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 14 13.8976 0.0008
## 001 0 1 2.3086 0.7418
## 010 0 4 2.0339 1.9006
## 011 0 3 4.8757 0.7216
## 100 0 5 2.1077 3.9689
## 101 0 2 4.3761 1.2902
## 110 0 3 4.5989 0.5559
## 111 0 16 13.8015 0.3502
## 1NANA 1 1 0.5939 0.2777
##
## Chi-square statistic = 10.2136
## Number of bootstrap samples = 5000
## P-value = 0.105
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.4966 3.9241 5.5556 7.8027 21.9891
##
## Estimate of c-hat = 1.6605
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 38 38.09 0.00
## 010 0 2 1.47 0.19
## 100 0 3 1.49 1.53
## 101 0 1 1.17 0.02
## 110 0 2 1.03 0.91
## 111 0 2 1.75 0.04
## 0NANA 1 1 0.76 0.08
##
## Chi-square statistic = 6.0021
## Number of bootstrap samples = 5000
## P-value = 0.5146
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.29 4.22 6.11 8.63 58.13
##
## Estimate of c-hat = 0.87
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 38 38.0939 0.0002
## 010 0 2 1.4709 0.1903
## 100 0 3 1.4899 1.5304
## 101 0 1 1.1670 0.0239
## 110 0 2 1.0326 0.9063
## 111 0 2 1.7497 0.0358
## 0NANA 1 1 0.7580 0.0772
##
## Chi-square statistic = 6.0021
## Number of bootstrap samples = 5000
## P-value = 0.5146
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.2899 4.2157 6.1149 8.6268 58.1292
##
## Estimate of c-hat = 0.8695
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 36 36.09 0.00
## 001 0 2 2.79 0.22
## 010 0 1 2.79 1.15
## 011 0 1 1.05 0.00
## 100 0 5 2.79 1.76
## 101 0 2 1.05 0.86
## 110 0 1 1.05 0.00
## 0NANA 1 1 0.89 0.01
##
## Chi-square statistic = 4.5089
## Number of bootstrap samples = 5000
## P-value = 0.5604
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.25 3.20 5.00 7.65 27.78
##
## Estimate of c-hat = 0.76
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 36 36.0932 0.0002
## 001 0 2 2.7867 0.2221
## 010 0 1 2.7867 1.1455
## 011 0 1 1.0503 0.0024
## 100 0 5 2.7867 1.7579
## 101 0 2 1.0503 0.8587
## 110 0 1 1.0503 0.0024
## 0NANA 1 1 0.8899 0.0136
##
## Chi-square statistic = 4.5089
## Number of bootstrap samples = 5000
## P-value = 0.5604
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.2471 3.2037 4.9999 7.6498 27.7826
##
## Estimate of c-hat = 0.759
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 31 31.18 0.00
## 001 0 1 1.17 0.02
## 011 0 2 1.53 0.14
## 100 0 3 1.36 1.96
## 101 0 2 1.76 0.03
## 110 0 1 2.11 0.58
## 111 0 8 7.72 0.01
## 0NANA 1 1 0.82 0.04
##
## Chi-square statistic = 4.1315
## Number of bootstrap samples = 5000
## P-value = 0.702
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.23 3.80 5.60 8.32 158.17
##
## Estimate of c-hat = 0.63
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 31 31.1849 0.0011
## 001 0 1 1.1707 0.0249
## 011 0 2 1.5309 0.1437
## 100 0 3 1.3637 1.9632
## 101 0 2 1.7609 0.0325
## 110 0 1 2.1059 0.5807
## 111 0 8 7.7246 0.0098
## 0NANA 1 1 0.8216 0.0387
##
## Chi-square statistic = 4.1315
## Number of bootstrap samples = 5000
## P-value = 0.702
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.2317 3.8011 5.6000 8.3237 158.1747
##
## Estimate of c-hat = 0.6302
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 37 37.59 0.01
## 010 0 6 2.95 3.14
## 011 0 1 0.49 0.55
## 100 0 4 2.95 0.37
## 0NANA 1 1 0.91 0.01
##
## Chi-square statistic = 8.1899
## Number of bootstrap samples = 5000
## P-value = 0.215
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.53 3.26 4.98 7.62 87.10
##
## Estimate of c-hat = 1.36
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 37 37.5870 0.0092
## 010 0 6 2.9540 3.1409
## 011 0 1 0.4854 0.5457
## 100 0 4 2.9540 0.3704
## 0NANA 1 1 0.9058 0.0098
##
## Chi-square statistic = 8.1899
## Number of bootstrap samples = 5000
## P-value = 0.215
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.5313 3.2641 4.9751 7.6154 87.0951
##
## Estimate of c-hat = 1.3555
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 12 12.21 0.00
## 001 0 4 4.01 0.00
## 010 0 4 3.96 0.00
## 011 0 3 5.39 1.06
## 100 0 7 3.95 2.36
## 101 0 5 5.16 0.00
## 110 0 2 5.23 2.00
## 111 0 11 8.09 1.05
## 0NANA 1 1 0.57 0.33
##
## Chi-square statistic = 7.2442
## Number of bootstrap samples = 5000
## P-value = 0.3074
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.77 3.94 5.68 7.84 22.15
##
## Estimate of c-hat = 1.16
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 12 12.2094 0.0036
## 001 0 4 4.0071 0.0000
## 010 0 4 3.9635 0.0003
## 011 0 3 5.3935 1.0622
## 100 0 7 3.9483 2.3587
## 101 0 5 5.1605 0.0050
## 110 0 2 5.2314 1.9960
## 111 0 11 8.0864 1.0498
## 0NANA 1 1 0.5654 0.3340
##
## Chi-square statistic = 7.2442
## Number of bootstrap samples = 5000
## P-value = 0.3074
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.7666 3.9414 5.6812 7.8422 22.1515
##
## Estimate of c-hat = 1.1624
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 40 40.08 0.00
## 001 0 1 1.35 0.09
## 010 0 3 1.35 2.03
## 011 0 2 1.03 0.91
## 110 0 1 1.03 0.00
## 111 0 1 0.79 0.06
## 0NANA 1 1 0.69 0.13
##
## Chi-square statistic = 5.9087
## Number of bootstrap samples = 5000
## P-value = 0.4756
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 1.8e-04 4.0e+00 5.7e+00 7.7e+00 2.7e+01
##
## Estimate of c-hat = 0.96
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 40 40.0836 0.0002
## 001 0 1 1.3454 0.0887
## 010 0 3 1.3454 2.0349
## 011 0 2 1.0304 0.9125
## 110 0 1 1.0304 0.0009
## 111 0 1 0.7891 0.0564
## 0NANA 1 1 0.6947 0.1342
##
## Chi-square statistic = 5.9087
## Number of bootstrap samples = 5000
## P-value = 0.4756
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 1.799e-04 3.997e+00 5.728e+00 7.680e+00 2.690e+01
##
## Estimate of c-hat = 0.964
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 39 37.94 0.03
## 001 0 3 2.47 0.11
## 010 0 3 2.47 0.11
## 110 0 2 0.77 1.98
## 111 0 1 0.34 1.26
## 0NANA 1 1 1.00 0.00
##
## Chi-square statistic = 7.5029
## Number of bootstrap samples = 5000
## P-value = 0.22
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.19 3.41 5.03 7.16 26.80
##
## Estimate of c-hat = 1.33
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 39 37.9409 0.0296
## 001 0 3 2.4712 0.1131
## 010 0 3 2.4713 0.1131
## 110 0 2 0.7676 1.9786
## 111 0 1 0.3425 1.2620
## 0NANA 1 1 1.0000 0.0000
##
## Chi-square statistic = 7.5029
## Number of bootstrap samples = 5000
## P-value = 0.22
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.1902 3.4083 5.0258 7.1601 26.8014
##
## Estimate of c-hat = 1.3269
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 41 41.14 0.00
## 001 0 1 1.43 0.13
## 100 0 3 1.43 1.72
## 110 0 3 0.73 7.03
## 0NANA 1 1 0.87 0.02
##
## Chi-square statistic = 12.3006
## Number of bootstrap samples = 5000
## P-value = 0.0562
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.07 3.55 5.21 7.67 29.52
##
## Estimate of c-hat = 2.06
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 41 41.1374 0.0005
## 001 0 1 1.4310 0.1298
## 100 0 3 1.4310 1.7203
## 110 0 3 0.7318 7.0305
## 0NANA 1 1 0.8690 0.0197
##
## Chi-square statistic = 12.3006
## Number of bootstrap samples = 5000
## P-value = 0.0562
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.06961 3.54629 5.20852 7.67265 29.52286
##
## Estimate of c-hat = 2.0593
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
## Warning in sqrt(diag(v)): NaNs produced
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 46 45.99 0.00
## 100 0 1 0.24 2.47
## 111 0 1 1.23 0.04
## 0NANA 1 1 1.00 0.00
##
## Chi-square statistic = 3.0585
## Number of bootstrap samples = 5000
## P-value = 0.029
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 6.8e-11 6.0e-03 2.8e-01 7.4e-01 7.4e+00
##
## Estimate of c-hat = 5.2
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 46 45.9931 0.0000
## 100 0 1 0.2360 2.4738
## 111 0 1 1.2289 0.0426
## 0NANA 1 1 1.0000 0.0000
##
## Chi-square statistic = 3.0585
## Number of bootstrap samples = 5000
## P-value = 0.029
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 6.767e-11 5.968e-03 2.846e-01 7.357e-01 7.407e+00
##
## Estimate of c-hat = 5.2027
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 30 30.99 0.03
## 001 0 2 2.19 0.02
## 010 0 2 1.75 0.04
## 011 0 5 2.56 2.33
## 100 0 5 1.82 5.59
## 111 0 4 4.18 0.01
## 0NANA 1 1 0.79 0.06
##
## Chi-square statistic = 12.7869
## Number of bootstrap samples = 5000
## P-value = 0.0612
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.31 3.72 5.59 8.15 33.24
##
## Estimate of c-hat = 2.01
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 30 30.9880 0.0315
## 001 0 2 2.1940 0.0172
## 010 0 2 1.7508 0.0355
## 011 0 5 2.5585 2.3300
## 100 0 5 1.8151 5.5885
## 111 0 4 4.1835 0.0080
## 0NANA 1 1 0.7898 0.0559
##
## Chi-square statistic = 12.7869
## Number of bootstrap samples = 5000
## P-value = 0.0612
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.3091 3.7194 5.5923 8.1542 33.2421
##
## Estimate of c-hat = 2.0121
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 24 23.79 0.00
## 001 0 3 1.96 0.55
## 010 0 3 1.96 0.55
## 011 0 1 3.74 2.00
## 100 0 3 1.96 0.55
## 101 0 1 3.74 2.00
## 110 0 3 3.74 0.14
## 111 0 10 7.13 1.16
## 1NANA 1 1 0.55 0.38
##
## Chi-square statistic = 7.8034
## Number of bootstrap samples = 5000
## P-value = 0.2326
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.76 3.87 5.48 7.57 24.28
##
## Estimate of c-hat = 1.29
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 24 23.7910 0.0018
## 001 0 3 1.9579 0.5547
## 010 0 3 1.9579 0.5547
## 011 0 1 3.7358 2.0034
## 100 0 3 1.9579 0.5547
## 101 0 1 3.7358 2.0034
## 110 0 3 3.7358 0.1449
## 111 0 10 7.1280 1.1571
## 1NANA 1 1 0.5469 0.3755
##
## Chi-square statistic = 7.8034
## Number of bootstrap samples = 5000
## P-value = 0.2326
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.7568 3.8743 5.4810 7.5723 24.2785
##
## Estimate of c-hat = 1.2884
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 13 12.54 0.02
## 001 0 4 4.19 0.01
## 010 0 2 4.07 1.05
## 011 0 6 5.23 0.11
## 100 0 7 4.00 2.25
## 101 0 4 5.03 0.21
## 110 0 2 5.13 1.91
## 111 0 10 7.82 0.61
## 1NANA 1 1 0.62 0.24
##
## Chi-square statistic = 6.7919
## Number of bootstrap samples = 5000
## P-value = 0.3634
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.47 3.98 5.72 7.96 41.16
##
## Estimate of c-hat = 1.08
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 13 12.5390 0.0169
## 001 0 4 4.1921 0.0088
## 010 0 2 4.0651 1.0491
## 011 0 6 5.2275 0.1141
## 100 0 7 3.9995 2.2509
## 101 0 4 5.0259 0.2094
## 110 0 2 5.1298 1.9095
## 111 0 10 7.8210 0.6071
## 1NANA 1 1 0.6150 0.2410
##
## Chi-square statistic = 6.7919
## Number of bootstrap samples = 5000
## P-value = 0.3634
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.4737 3.9785 5.7180 7.9630 41.1633
##
## Estimate of c-hat = 1.0793
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 22 21.55 0.01
## 001 0 5 3.03 1.28
## 010 0 1 3.03 1.36
## 011 0 3 4.01 0.26
## 100 0 6 3.03 2.91
## 101 0 1 4.01 2.26
## 110 0 2 4.01 1.01
## 111 0 8 5.31 1.36
## 1NANA 1 1 0.34 1.27
##
## Chi-square statistic = 12.3741
## Number of bootstrap samples = 5000
## P-value = 0.0446
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.6 3.9 5.6 7.7 28.9
##
## Estimate of c-hat = 2.03
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 22 21.5510 0.0094
## 001 0 5 3.0317 1.2779
## 010 0 1 3.0317 1.3616
## 011 0 3 4.0135 0.2559
## 100 0 6 3.0317 2.9062
## 101 0 1 4.0135 2.2627
## 110 0 2 4.0135 1.0102
## 111 0 8 5.3133 1.3586
## 1NANA 1 1 0.3411 1.2729
##
## Chi-square statistic = 12.3741
## Number of bootstrap samples = 5000
## P-value = 0.0446
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.6024 3.8843 5.5561 7.6562 28.8635
##
## Estimate of c-hat = 2.0271
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 44 44.55 0.01
## 010 0 4 0.93 10.11
## 0NANA 1 1 1.00 0.00
##
## Chi-square statistic = 12.6375
## Number of bootstrap samples = 5000
## P-value = 0.0298
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 4.1e-09 2.2e+00 3.8e+00 5.9e+00 2.0e+02
##
## Estimate of c-hat = 2.75
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 44 44.5498 0.0068
## 010 0 4 0.9313 10.1113
## 0NANA 1 1 0.9995 0.0000
##
## Chi-square statistic = 12.6375
## Number of bootstrap samples = 5000
## P-value = 0.0298
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 4.094e-09 2.217e+00 3.836e+00 5.943e+00 1.957e+02
##
## Estimate of c-hat = 2.7488
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 43 42.81 0.00
## 010 0 2 1.51 0.16
## 011 0 1 0.21 2.99
## 100 0 2 1.51 0.16
## 0NANA 1 1 0.88 0.02
##
## Chi-square statistic = 5.4007
## Number of bootstrap samples = 5000
## P-value = 0.4376
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 1.4e-09 2.8e+00 4.8e+00 7.7e+00 1.0e+02
##
## Estimate of c-hat = 0.89
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 43 42.8082 0.0009
## 010 0 2 1.5116 0.1578
## 011 0 1 0.2093 2.9866
## 100 0 2 1.5116 0.1578
## 0NANA 1 1 0.8784 0.0168
##
## Chi-square statistic = 5.4007
## Number of bootstrap samples = 5000
## P-value = 0.4376
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 1.369e-09 2.768e+00 4.829e+00 7.682e+00 1.020e+02
##
## Estimate of c-hat = 0.8949