臺灣外銷訂單指數

lm(ExportIndex~.,select(leading,c(2,8:18))) %>% summary
## 
## Call:
## lm(formula = ExportIndex ~ ., data = select(leading, c(2, 8:18)))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -36.880 -13.624   2.495  10.543  35.365 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  102.790      5.368  19.149  < 2e-16 ***
## Jan          -10.734      7.417  -1.447  0.15066    
## Feb          -22.582      7.417  -3.045  0.00291 ** 
## Mar           -2.953      7.417  -0.398  0.69131    
## Apr           -7.147      7.591  -0.941  0.34851    
## May           -7.884      7.591  -1.039  0.30127    
## Jun           -6.781      7.591  -0.893  0.37366    
## Jul           -5.949      7.591  -0.784  0.43491    
## Aug           -5.169      7.591  -0.681  0.49735    
## Sep            0.897      7.591   0.118  0.90615    
## Oct            3.385      7.591   0.446  0.65654    
## Nov            1.531      7.591   0.202  0.84054    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.97 on 111 degrees of freedom
## Multiple R-squared:  0.1508, Adjusted R-squared:  0.06668 
## F-statistic: 1.792 on 11 and 111 DF,  p-value: 0.06353
p1<-qplot(Date,ExportIndex,data=filter(leading,Feb!=1),geom=c("line","point"))+geom_smooth(method="lm")+ggtitle("臺灣外銷訂單指數")
p2<-ggplot(filter(leading,Feb!=1),aes(Date,Delt(ExportIndex)))+geom_bar(stat="identity")+geom_smooth(method="lm")+scale_y_continuous(labels=percent)+ggtitle("臺灣外銷訂單指 數MoM")
p3<-ggplot(filter(leading,Feb!=1),aes(Date,Delt(ExportIndex,k=12)))+geom_bar(stat="identity")+geom_smooth(method="lm")+ggtitle("臺灣外銷訂單指數 YoY")
grid.arrange(p1,p2,p3)

ggplot(Export,aes(x=Date,y=value,group=variable,color=variable))+geom_line()+geom_point()+geom_hline(yintercept=0,size=1)+ggtitle("出口商品細項 MoM")+scale_y_continuous(labels=percent)+ylab("Delta")

臺灣核發建照面積數

lm(ConstructionPermit~.,select(leading,c(6,8:18))) %>% summary
p1<-qplot(Date,ConstructionPermit,data=filter(leading,Feb!=1 & Sep!=1),geom=c("line","point"))+geom_smooth(aes(Date,ConstructionPermit),data=leading[97:123,],method="lm")+ggtitle("臺灣核發建照面積")+ylab("ConstructionPermit (1000 meter square)")
p2<-ggplot(data=filter(leading,Feb!=1 & Sep!=1),aes(Date,Delt(ConstructionPermit)))+geom_bar(stat="identity")+geom_smooth(method="lm")+scale_y_continuous(labels=percent)+ggtitle("臺灣核發建照面積數 MoM")+ylab("Delta")
p3<-ggplot(data=filter(leading,Feb!=1 & Sep!=1),aes(Date,Delt(ConstructionPermit,k=12)))+geom_bar(stat="identity")+geom_smooth(method="lm")+ggtitle("臺灣核發建照面積 YoY")+ylab("Delta")+scale_y_continuous(labels=percent)
grid.arrange(p1,p2,p3)

B/B 值

p1<-qplot(Date,BB,data=leading,geom=c("line","point"))+geom_smooth(method="lm")+ggtitle("BB Ratio")
p2<-ggplot(bb,aes(x=Date,y=value,group=variable,color=variable))+geom_line()+geom_point()+ggtitle("BB Ratio細項")+scale_y_continuous(labels=dollar)+ylab("Million")
grid.arrange(p1,p2)

臺灣工業及服務業受僱員工淨進入率

lm(NetEntranceRate~.,select(leading,c(5,8:18))) %>% summary
## 
## Call:
## lm(formula = NetEntranceRate ~ ., data = select(leading, c(5, 
##     8:18)))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3850 -0.0585  0.0240  0.1340  0.3750 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.02500    0.08368   0.299   0.7657    
## Jan         -0.05409    0.11563  -0.468   0.6408    
## Feb         -0.29409    0.11563  -2.543   0.0124 *  
## Mar          0.17773    0.11563   1.537   0.1271    
## Apr          0.05300    0.11835   0.448   0.6551    
## May          0.14500    0.11835   1.225   0.2231    
## Jun          0.18200    0.11835   1.538   0.1269    
## Jul          0.69200    0.11835   5.847 5.11e-08 ***
## Aug          0.17500    0.11835   1.479   0.1421    
## Sep         -0.02000    0.11835  -0.169   0.8661    
## Oct          0.08500    0.11835   0.718   0.4741    
## Nov          0.11100    0.11835   0.938   0.3503    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2646 on 111 degrees of freedom
## Multiple R-squared:  0.4337, Adjusted R-squared:  0.3776 
## F-statistic: 7.729 on 11 and 111 DF,  p-value: 8.534e-10
p1<-qplot(Date,NetEntranceRate,data=filter(leading,Feb!=1 & Jul!=1),geom=c("line","point"))+geom_smooth(method="lm")+scale_y_continuous(labels=percent)+ggtitle("臺灣工業及服務業受僱員工淨進入率")
p2<-ggplot(data=filter(leading,Feb!=1 & Jul!=1),aes(Date,Delt(NetEntranceRate)))+geom_bar(stat="identity")+geom_smooth(method="lm")+scale_y_continuous(labels=percent)+ggtitle("臺灣工業及服務業受僱員工淨進入率 MoM")+ylab("Delta")
p3<-ggplot(data=filter(leading,Feb!=1 & Jul!=1),aes(Date,Delt(NetEntranceRate,k=12)))+geom_bar(stat="identity")+geom_smooth(method="lm")+scale_y_continuous(labels=percent)+ggtitle("臺灣工業及服務業受僱員工淨進入率 YoY")+ylab("Delta")
grid.arrange(p1,p2,p3)

M1B

p1<-qplot(Date,M1B,data=leading,geom=c("line","point"))+geom_smooth(method="lm")+scale_y_continuous(labels=dollar)+ylab("M1B (億)")+ggtitle("臺灣M1B")
p2<-ggplot(data=leading,aes(Date,Delt(M1B)))+geom_bar(stat="identity")+geom_smooth(method="lm")+scale_y_continuous(labels=percent)+ggtitle("臺灣M1B MoM")+ylab("Delta")
p3<-ggplot(data=leading,aes(Date,Delt(M1B,k=12)))+geom_bar(stat="identity")+geom_smooth(method="lm")+scale_y_continuous(labels=percent)+ggtitle("臺灣M1B YoY")+ylab("Delta")
grid.arrange(p1,p2,p3)

qplot(Date,SavingRate,data=SR,geom = c("line","point"))+geom_smooth(aes(Date,SavingRate),data=SR[22:37,],method="lm")+scale_y_continuous(labels=percent)+ggtitle("臺灣儲蓄率")

結論