by Mughundhan Chandrasekar - May/14/2016
library(datasets)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.5
library(graphics)
library(lattice)
str(ToothGrowth)
## 'data.frame': 60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
ToothGrowth[1:10,]
## len supp dose
## 1 4.2 VC 0.5
## 2 11.5 VC 0.5
## 3 7.3 VC 0.5
## 4 5.8 VC 0.5
## 5 6.4 VC 0.5
## 6 10.0 VC 0.5
## 7 11.2 VC 0.5
## 8 11.2 VC 0.5
## 9 5.2 VC 0.5
## 10 7.0 VC 0.5
table(ToothGrowth$dose, ToothGrowth$supp)
##
## OJ VC
## 0.5 10 10
## 1 10 10
## 2 10 10
ggplot(data=ToothGrowth, aes(x=as.factor(dose), y=len, fill=supp)) +
geom_bar(stat="identity",) +
facet_grid(. ~ supp) +
xlab("Dosage in miligrams") +
ylab("Tooth length") +
guides(fill=guide_legend(title="Supplement Type"))
##### Exploring dataset by plotting B
xyplot(len~dose|supp, ToothGrowth,
main="Scatterplots by Supplement Type and Dosage",
ylab="Length", xlab="Dose")
summary(ToothGrowth)
## len supp dose
## Min. : 4.20 OJ:30 Min. :0.500
## 1st Qu.:13.07 VC:30 1st Qu.:0.500
## Median :19.25 Median :1.000
## Mean :18.81 Mean :1.167
## 3rd Qu.:25.27 3rd Qu.:2.000
## Max. :33.90 Max. :2.000
t.test(len ~ supp, data = ToothGrowth)
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean in group OJ mean in group VC
## 20.66333 16.96333
t.test(len ~ supp, ToothGrowth[ToothGrowth$dose == .5, ])
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 3.1697, df = 14.969, p-value = 0.006359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.719057 8.780943
## sample estimates:
## mean in group OJ mean in group VC
## 13.23 7.98
t.test(len ~ supp, ToothGrowth[ToothGrowth$dose == 1, ])
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 4.0328, df = 15.358, p-value = 0.001038
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 2.802148 9.057852
## sample estimates:
## mean in group OJ mean in group VC
## 22.70 16.77
t.test(len ~ supp, ToothGrowth[ToothGrowth$dose == 2, ])
##
## Welch Two Sample t-test
##
## data: len by supp
## t = -0.046136, df = 14.04, p-value = 0.9639
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.79807 3.63807
## sample estimates:
## mean in group OJ mean in group VC
## 26.06 26.14
Confidence testing while varying dosage results that an increase in dosage from .5, 1, to 2 is proportianal to longer tooth. However, with a p-value of 0.06 and having zero in the confidence interval means we can not reject the null hypothesis that different supplement types have no effect on tooth length.