To compare Visual Inspection with Acetic Acid, High Risk Human Papillomavirus DNA testing, and Liquid-based cytology to biopsy analysis among women attending clinics in Yirgalem, Ethiopia.
where: w is the effect size, N is the total sample size, and df is the degrees of freedom. Cohen suggests that w values of 0.1, 0.3, and 0.5 represent small, medium, and large effect sizes respectively.
The Yirgallem Study, proposed study size with the following assumptions for Chi-square analysis: w = 0,4 degrees of freedom = 4 (prevalence positive VIA, PAP cyto and DNA) Sig. level = 0,05 power = 0,8
## Yirgallem study, size:
size <- pwr.chisq.test(w=0.4,df=(3-1)*(3-1),N=NULL, sig.level=0.05, power=.8)
size
##
## Chi squared power calculation
##
## w = 0.4
## N = 74.59554
## df = 4
## sig.level = 0.05
## power = 0.8
##
## NOTE: N is the number of observations
## Yirgallem study, power:
power <- pwr.chisq.test(w=0.4,df=(3-1)*(3-1),N=94, sig.level=0.05, power=NULL)
power
##
## Chi squared power calculation
##
## w = 0.4
## N = 94
## df = 4
## sig.level = 0.05
## power = 0.8920586
##
## NOTE: N is the number of observations
# range of effect size
w <- seq(.1,.5,.01)
nw <- length(w)
# power values
p <- seq(.4,.9,.1)
np <- length(p)
# obtain sample sizes
samsize <- array(numeric(nw*np), dim=c(nw,np))
for (i in 1:np){
for (j in 1:nw){
result <- pwr.chisq.test(w = w[j], df = (3-1)*(3-1), N = NULL, sig.level = .05, power = p[i])
samsize[j,i] <- ceiling(result$N)
}
}
# set up graph
xrange <- range(w)
yrange <- round(range(samsize))
colors <- rainbow(length(p))
plot(xrange, yrange, type="n",
xlab="effect size (w)",
ylab="Sample Size (n)" )
# add power curves
for (i in 1:np){
lines(w, samsize[,i], type="l", lwd=2, col=colors[i])
}
# add annotation (grid lines, title, legend)
abline(v=0, h=seq(0,yrange[2],50), lty=2, col="grey89")
abline(h=0, v=seq(xrange[1],xrange[2],.02), lty=2,
col="grey89")
title("Sample Size Estimation for Chis-square Studies\n
Sig=0.05")
legend("topright", title="Power", as.character(p),
fill=colors)