1. Early (6m) vs. Late Group
## Call: survfit(formula = Surv(Time2Fu - Time2Infection.1, Event) ~ group, 
##     data = dat2)
## 
##                         n events median 0.95LCL 0.95UCL
## group=Early (<0.5yr) 1689    829   2.73    2.51    2.94
## group=Late (>0.5yr)   911    509   1.91    1.65    2.23

##                       yr1  yr2 yr3 yr4 yr5 yr6 yr7 yr8 yr9 yr10 NA
## group=Early (<0.5yr) 1689 1179 726 397 232 144  89  51  24    5  0
## group=Late (>0.5yr)   911  528 295 178  92  55  32  18   7    0  0
## Call:
## coxph(formula = Surv(Time2Fu - Time2Infection.1, Event) ~ group, 
##     data = dat2)
## 
##   n= 2600, number of events= 1338 
## 
##                       coef exp(coef) se(coef)     z Pr(>|z|)    
## groupLate (>0.5yr) 0.33596   1.39928  0.05634 5.963 2.48e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## groupLate (>0.5yr)     1.399     0.7147     1.253     1.563
## 
## Concordance= 0.561  (se = 0.007 )
## Rsquare= 0.013   (max possible= 0.999 )
## Likelihood ratio test= 34.48  on 1 df,   p=4.307e-09
## Wald test            = 35.56  on 1 df,   p=2.476e-09
## Score (logrank) test = 35.89  on 1 df,   p=2.085e-09
## Call: survfit(formula = Surv(Time2Fu, Event) ~ group, data = dat2, 
##     start.time = early.cut)
## 
##                         n events median 0.95LCL 0.95UCL
## group=Early (<0.5yr) 1689    829    2.9    2.73    3.19
## group=Late (>0.5yr)   911    509    2.6    2.34    2.95

##                       yr1 yr2 yr3 yr4 yr5 yr6 yr7 yr8 yr9 yr10
## group=Early (<0.5yr) 1303 793 451 251 160  96  57  27   6    0
## group=Late (>0.5yr)   765 446 259 146  77  51  28  13   5    0
## Call:
## coxph(formula = Surv(rep(early.cut, nrow(dat2)), Time2Fu, Event) ~ 
##     group, data = dat2)
## 
##   n= 2600, number of events= 1338 
## 
##                       coef exp(coef) se(coef)     z Pr(>|z|)
## groupLate (>0.5yr) 0.07494   1.07782  0.05632 1.331    0.183
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## groupLate (>0.5yr)     1.078     0.9278    0.9652     1.204
## 
## Concordance= 0.505  (se = 0.007 )
## Rsquare= 0.001   (max possible= 0.999 )
## Likelihood ratio test= 1.76  on 1 df,   p=0.1847
## Wald test            = 1.77  on 1 df,   p=0.1833
## Score (logrank) test = 1.77  on 1 df,   p=0.1832

## Call:
## coxph(formula = Surv(tstart, tstop, infect) ~ group, data = dat3, 
##     method = "breslow")
## 
##   n= 7084, number of events= 4484 
## 
##                        coef exp(coef) se(coef)      z Pr(>|z|)
## groupLate (>0.5yr) -0.02065   0.97956  0.03254 -0.635    0.526
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## groupLate (>0.5yr)    0.9796      1.021     0.919     1.044
## 
## Concordance= 0.503  (se = 0.004 )
## Rsquare= 0   (max possible= 1 )
## Likelihood ratio test= 0.4  on 1 df,   p=0.5251
## Wald test            = 0.4  on 1 df,   p=0.5256
## Score (logrank) test = 0.4  on 1 df,   p=0.5256
## Call:
## coxph(formula = Surv(tstart, tstop, infect) ~ group + cluster(ID), 
##     data = dat3, method = "breslow")
## 
##   n= 7084, number of events= 4484 
## 
##                        coef exp(coef) se(coef) robust se     z Pr(>|z|)
## groupLate (>0.5yr) -0.02065   0.97956  0.03254   0.05582 -0.37    0.711
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## groupLate (>0.5yr)    0.9796      1.021    0.8781     1.093
## 
## Concordance= 0.503  (se = 0.004 )
## Rsquare= 0   (max possible= 1 )
## Likelihood ratio test= 0.4  on 1 df,   p=0.5251
## Wald test            = 0.14  on 1 df,   p=0.7114
## Score (logrank) test = 0.4  on 1 df,   p=0.5256,   Robust = 0.14  p=0.7105
## 
##   (Note: the likelihood ratio and score tests assume independence of
##      observations within a cluster, the Wald and robust score tests do not).
## Call: survfit(formula = Surv(tstop - tstart, infect) ~ group, data = subset(dat3, 
##     enum == 2))
## 
##                         n events median 0.95LCL 0.95UCL
## group=Early (<0.5yr) 1045    658  0.526   0.465   0.632
## group=Late (>0.5yr)   502    285  0.624   0.487   0.764

##                       yr1 yr2 yr3 yr4 yr5 yr6 yr7 yr8 yr9 yr10 NA
## group=Early (<0.5yr) 1045 240  85  41  24  21  11   6   3    0  0
## group=Late (>0.5yr)   502 106  37  17   8   5   1   0   0    0  0
## Call:
## coxph(formula = Surv(tstop - tstart, infect) ~ group, data = subset(dat3, 
##     enum == 2))
## 
##   n= 1547, number of events= 943 
## 
##                        coef exp(coef) se(coef)      z Pr(>|z|)
## groupLate (>0.5yr) -0.03288   0.96766  0.07095 -0.463    0.643
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## groupLate (>0.5yr)    0.9677      1.033     0.842     1.112
## 
## Concordance= 0.501  (se = 0.008 )
## Rsquare= 0   (max possible= 1 )
## Likelihood ratio test= 0.22  on 1 df,   p=0.6424
## Wald test            = 0.21  on 1 df,   p=0.6431
## Score (logrank) test = 0.21  on 1 df,   p=0.6431
## Call: survfit(formula = Surv(tstop - tstart, infect) ~ group, data = subset(dat3, 
##     enum > 3))
## 
##                         n events median 0.95LCL 0.95UCL
## group=Early (<0.5yr) 1427    987  0.274   0.268   0.287
## group=Late (>0.5yr)   567    379  0.312   0.257   0.402

##                       yr1 yr2 yr3 yr4 yr5 yr6 yr7 yr8 yr9 yr10 NA
## group=Early (<0.5yr) 1427 185  78  28  13  10   5   4   1    0  0
## group=Late (>0.5yr)   567  81  19  14   8   3   2   1   0    0  0
## Call:
## coxph(formula = Surv(tstop - tstart, infect) ~ group, data = subset(dat3, 
##     enum > 3))
## 
##   n= 1994, number of events= 1366 
## 
##                         coef exp(coef)  se(coef)     z Pr(>|z|)
## groupLate (>0.5yr) -0.007876  0.992155  0.060489 -0.13    0.896
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## groupLate (>0.5yr)    0.9922      1.008    0.8812     1.117
## 
## Concordance= 0.5  (se = 0.007 )
## Rsquare= 0   (max possible= 1 )
## Likelihood ratio test= 0.02  on 1 df,   p=0.8963
## Wald test            = 0.02  on 1 df,   p=0.8964
## Score (logrank) test = 0.02  on 1 df,   p=0.8964
## [1] "1.31 (1.27, 1.34)"
## [1] "1.42 (1.36, 1.48)"
##                        coef exp(coef) se(coef)       z Pr(>|z|)
## groupLate (>0.5yr)   0.3397    1.4045   0.0601  5.6537   0.0000
## age                  0.0164    1.0165   0.0021  7.9731   0.0000
## genderMale          -0.0453    0.9557   0.0589 -0.7693   0.4417
## race2White           0.0410    1.0419   0.0695  0.5897   0.5554
## diab2Yes             0.4221    1.5251   0.1092  3.8652   0.0001
## cause.esrdGN        -0.0133    0.9868   0.1357 -0.0980   0.9220
## cause.esrdHTN       -0.0191    0.9811   0.1202 -0.1588   0.8739
## cause.esrdOther     -0.0427    0.9582   0.1201 -0.3550   0.7226
## pd.typeNew          -0.2095    0.8110   0.0677 -3.0960   0.0020
## pd.typeOther        -0.1365    0.8724   0.0866 -1.5770   0.1148
## FirstSystemTypeCAPD -0.0590    0.9427   0.0623 -0.9468   0.3437
## cultureGramNeg       0.2023    1.2242   0.0990  2.0424   0.0411
## cultureGramPos       0.1409    1.1513   0.0784  1.7973   0.0723
## Analysis of Deviance Table
##  Cox model: response is Surv(Time2Fu - Time2Infection.1, Event)
## Terms added sequentially (first to last)
## 
##                  loglik   Chisq Df Pr(>|Chi|)    
## NULL            -8447.2                          
## group           -8431.6 31.1365  1  2.405e-08 ***
## age             -8397.2 68.8841  1  < 2.2e-16 ***
## gender          -8397.0  0.4992  1   0.479842    
## race2           -8396.9  0.0437  1   0.834385    
## diab2           -8366.6 60.6570  1  6.772e-15 ***
## cause.esrd      -8366.4  0.4453  3   0.930739    
## pd.type         -8360.9 10.8617  2   0.004379 ** 
## FirstSystemType -8360.4  1.1636  1   0.280716    
## culture         -8358.0  4.7139  2   0.094710 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                        coef exp(coef) se(coef)       z Pr(>|z|)
## groupLate (>0.5yr)   0.2033    1.2254   0.0951  2.1373   0.0326
## age                  0.0411    1.0420   0.0036 11.5470   0.0000
## genderMale           0.0530    1.0545   0.0913  0.5808   0.5614
## race2White           0.0994    1.1045   0.1152  0.8629   0.3882
## diab2Yes             0.4295    1.5365   0.1698  2.5295   0.0114
## cause.esrdGN        -0.3652    0.6941   0.2257 -1.6183   0.1056
## cause.esrdHTN       -0.2608    0.7705   0.1862 -1.4007   0.1613
## cause.esrdOther     -0.2047    0.8149   0.1844 -1.1105   0.2668
## pd.typeNew          -0.3625    0.6959   0.1028 -3.5258   0.0004
## pd.typeOther        -0.2679    0.7650   0.1355 -1.9777   0.0480
## FirstSystemTypeCAPD  0.0988    1.1038   0.0998  0.9894   0.3225
## cultureGramNeg       0.0364    1.0370   0.1497  0.2428   0.8082
## cultureGramPos      -0.0325    0.9680   0.1144 -0.2841   0.7763
## Analysis of Deviance Table
##  Cox model: response is Surv(Time2Fu - Time2Infection.1, Event.Death)
## Terms added sequentially (first to last)
## 
##                  loglik    Chisq Df Pr(>|Chi|)    
## NULL            -3536.6                           
## group           -3534.9   3.3201  1   0.068438 .  
## age             -3454.6 160.5827  1  < 2.2e-16 ***
## gender          -3454.5   0.1756  1   0.675148    
## race2           -3454.4   0.3197  1   0.571759    
## diab2           -3428.0  52.7244  1  3.838e-13 ***
## cause.esrd      -3426.0   4.0145  3   0.259899    
## pd.type         -3420.3  11.4485  2   0.003266 ** 
## FirstSystemType -3419.8   0.9633  1   0.326355    
## culture         -3419.6   0.3293  2   0.848203    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1