\[ \]
\[a) \ (1 + x^5 + x^{10} + x^{15} + ...)^3\] \[b) \ (x^3 + x^4 + x^5 + x^6 + x^7 + ...)^3\] \[c) \ (x^4 + x^5 + x^6)(x^3 + x^4 + x^5 + x^6 + x^7)(1 + x + x^2 + x^3 + x^4 + ...)\] \[d) \ (x^2 + x^4 + x^6 + x^8 + ...)(x^3 + x^6 + x^9 + ...)(x^4 + x^8 + x^{12} + ...)\] \[e) \ (1 + x^2 + x^4 + x^6 + x^8 + ...)(1 + x^4 + x^8 + x^{12} + ...)(1 + x^6 + x^{12} + x^{18} + ...)\]
Answer :: (a) Coefficient for \(x^{10}\) = \(6\). (b) Coefficient for \(x^{10}\) = \(3\).
\[a) \ 1/(1+3x)\] \[b) \ 1/(1-2x)^2\] \[c) \ 1/(1+x)^8\] \[d) \ 1/(1-4x)^3\] \[e) \ x^3/(1+4x)^2\]
Answer :: (a) Coefficient for \(x^{12}\) = \(531 \ 441\). (d) Coefficient for \(x^{12}\) = \(1526 \ 726 \ 656\). (e) Coefficient for \(x^{12}\) = \(-2 \ 621 \ 440\).