library('knitr')
library('markdown')
library('tidyr')
library('RCurl')
library('plyr')
library('dplyr')
library('ggplot2')
Average score by movie
moviesum<- ddply(tweets506, .(movie), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie
moviesum
## movie Sentiment_Score
## 1 A Beautiful Planet 0.9057405
## 2 Baaghi 0.4040677
## 3 Dough 0.5768954
## 4 Green Room 0.6289183
## 5 Keanu 0.7635731
## 6 Men & Chicken 0.8929113
## 7 Mother\x92s Day 0.7848442
## 8 Older Than Ireland 0.2630552
## 9 Ratchet & Clank 0.6356453
## 10 The Family Fang 0.4418001
## 11 The Man Who Knew Infinity 0.9159938
## 12 The Meddler 0.3039157
## 13 Viktoria 0.4310602
## 14 Viva 0.4730699
Average score by movie and city
moviecitysum<- ddply(tweets506, .(movie, city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie and city
moviecitysum
## movie city Sentiment_Score
## 1 A Beautiful Planet Houston 0.98532141
## 2 A Beautiful Planet Los Angeles 0.82615958
## 3 Baaghi New York City 0.57279971
## 4 Baaghi Seattle 0.23533563
## 5 Dough Los Angeles 0.57689536
## 6 Green Room Chicago 0.55915763
## 7 Green Room Denver 0.65774505
## 8 Green Room Houston 0.09630323
## 9 Green Room Los Angeles 0.59954875
## 10 Green Room New York City 0.73919461
## 11 Keanu Chicago 0.89845158
## 12 Keanu Houston 0.60632967
## 13 Keanu Los Angeles 0.61189566
## 14 Keanu New York City 0.82320652
## 15 Keanu St. Louis 0.65205039
## 16 Men & Chicken Los Angeles 0.89291128
## 17 Mother\x92s Day Boston 0.95848407
## 18 Mother\x92s Day Chicago 0.62280711
## 19 Mother\x92s Day Denver 0.80076838
## 20 Mother\x92s Day Houston 0.88672895
## 21 Mother\x92s Day Los Angeles 0.78878554
## 22 Mother\x92s Day New York City 0.77102344
## 23 Older Than Ireland Boston 0.26305515
## 24 Ratchet & Clank Denver 0.75339541
## 25 Ratchet & Clank Lincoln 0.07560809
## 26 Ratchet & Clank Los Angeles 0.49815989
## 27 Ratchet & Clank New Orleans 0.74542750
## 28 Ratchet & Clank New York City 0.73535306
## 29 Ratchet & Clank Seattle 0.71106962
## 30 The Family Fang Chicago 0.44180008
## 31 The Man Who Knew Infinity Denver 0.91599379
## 32 The Meddler Los Angeles 0.31883384
## 33 The Meddler New York City 0.21440678
## 34 Viktoria Los Angeles 0.43106017
## 35 Viva Seattle 0.47306988
Average score by city
citysum<- ddply(tweets506, .(city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by city
citysum
## city Sentiment_Score
## 1 Boston 0.61076961
## 2 Chicago 0.74875887
## 3 Denver 0.78197566
## 4 Houston 0.66005015
## 5 Lincoln 0.07560809
## 6 Los Angeles 0.65227636
## 7 New Orleans 0.74542750
## 8 New York City 0.77536191
## 9 Seattle 0.56832288
## 10 St. Louis 0.65205039
[Verification Step] Show List of Unique Movies
allmovies<-unique(tweets506[c("movie")]) # get unique movies
allmovies$num<-seq.int(nrow(allmovies)) # add counter row
allmovies #show unique values for movie name
## movie num
## 1 Baaghi 1
## 3 Keanu 2
## 46 Dough 3
## 47 The Family Fang 4
## 48 The Man Who Knew Infinity 5
## 49 Viva 6
## 50 Mother\x92s Day 7
## 88 Older Than Ireland 8
## 89 A Beautiful Planet 9
## 91 Ratchet & Clank 10
## 105 Viktoria 11
## 106 Men & Chicken 12
## 107 The Meddler 13
## 114 Green Room 14
Graphs by Average Movie Sentiment and Average City Sentiment
ggplot(
moviesum, aes(x = reorder(movie,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("Movie Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="Movies",y="Score")

ggplot(
citysum, aes(x = reorder(city,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("City Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="City",y="Score")
