library(Quandl)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
Quandl.api_key('4-KG5x_Vo7rXzmZNAHch')
library("tseries")
library("urca")
library("vars")
## Loading required package: MASS
## Loading required package: strucchange
## Loading required package: sandwich
## Loading required package: lmtest
library("gdata")
## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
## 
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
## 
## Attaching package: 'gdata'
## The following objects are masked from 'package:xts':
## 
##     first, last
## The following object is masked from 'package:stats':
## 
##     nobs
## The following object is masked from 'package:utils':
## 
##     object.size
fund <- Quandl("FRED/FEDFUNDS",type="zoo")
aaa <-Quandl("FED/RIMLPAAAR_N_M", type="zoo")
str(fund)
## 'zooreg' series from Jul 1954 to Apr 2016
##   Data: num [1:742] 0.8 1.22 1.06 0.85 0.83 1.28 1.39 1.29 1.35 1.43 ...
##   Index: Class 'yearmon'  num [1:742] 1954 1955 1955 1955 1955 ...
##   Frequency: 12
str(aaa)
## 'zooreg' series from Jan 1919 to Jan 2016
##   Data: num [1:1165] 5.35 5.35 5.39 5.44 5.39 5.4 5.44 5.56 5.6 5.54 ...
##   Index: Class 'yearmon'  num [1:1165] 1919 1919 1919 1919 1919 ...
##   Frequency: 12
v <- cbind(fund,aaa)
v1 <- window(v,start="July 1954", end = "January 2016")
plot(v1,xlab="period", main="1954-2016")

dfund <- diff(fund)
daaa <- diff(aaa)
vd<-cbind(dfund,daaa)
vd1 <- cbind(vd,start="July 1954", end = "January 2016")
## Warning in merge.zoo(..., all = all, fill = fill, suffixes = suffixes,
## retclass = "zoo", : Index vectors are of different classes: yearmon integer
## integer
summary( ur.ers(fund, type="P-test", lag.max=8, model="trend"))
## 
## ############################################### 
## # Elliot, Rothenberg and Stock Unit Root Test # 
## ############################################### 
## 
## Test of type P-test 
## detrending of series with intercept and trend 
## 
## Value of test-statistic is: 11.765 
## 
## Critical values of P-test are:
##                 1pct 5pct 10pct
## critical values 3.96 5.62  6.89
summary( ur.ers(aaa, type="P-test", lag.max=8, model="trend"))
## 
## ############################################### 
## # Elliot, Rothenberg and Stock Unit Root Test # 
## ############################################### 
## 
## Test of type P-test 
## detrending of series with intercept and trend 
## 
## Value of test-statistic is: 27.783 
## 
## Critical values of P-test are:
##                 1pct 5pct 10pct
## critical values 3.96 5.62  6.89
summary( ur.ers(dfund, type="P-test", lag.max=8, model="trend"))
## 
## ############################################### 
## # Elliot, Rothenberg and Stock Unit Root Test # 
## ############################################### 
## 
## Test of type P-test 
## detrending of series with intercept and trend 
## 
## Value of test-statistic is: 0.4538 
## 
## Critical values of P-test are:
##                 1pct 5pct 10pct
## critical values 3.96 5.62  6.89
summary (ur.ers(daaa, type="P-test", lag.max=8, model="trend"))
## 
## ############################################### 
## # Elliot, Rothenberg and Stock Unit Root Test # 
## ############################################### 
## 
## Test of type P-test 
## detrending of series with intercept and trend 
## 
## Value of test-statistic is: 0.1118 
## 
## Critical values of P-test are:
##                 1pct 5pct 10pct
## critical values 3.96 5.62  6.89

B

fundaaa <- ca.jo(v1, ecdet="const", type="trace", K=2, spec="transitory")
fundaaa <- ca.jo(v1, ecdet="const", type="eigen", K=2, spec="transitory")
summary(fundaaa)
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Test type: maximal eigenvalue statistic (lambda max) , without linear trend and constant in cointegration 
## 
## Eigenvalues (lambda):
## [1] 5.656992e-02 6.236329e-03 1.476527e-18
## 
## Values of teststatistic and critical values of test:
## 
##           test 10pct  5pct  1pct
## r <= 1 |  4.61  7.52  9.24 12.97
## r = 0  | 42.92 13.75 15.67 20.20
## 
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
## 
##            fund.l1     aaa.l1  constant
## fund.l1   1.000000    1.00000   1.00000
## aaa.l1   -1.156911   66.64856  -1.39404
## constant  3.118329 -471.27749 -54.94366
## 
## Weights W:
## (This is the loading matrix)
## 
##            fund.l1        aaa.l1      constant
## fund.d -0.03650126 -1.586843e-04  7.825856e-19
## aaa.d   0.01595198 -7.063239e-05 -2.116698e-19

C

lttest(fundaaa, r=1)
## LR-test for no linear trend
## 
## H0: H*2(r<=1)
## H1: H2(r<=1)
## 
## Test statistic is distributed as chi-square
## with 1 degress of freedom
##         test statistic p-value
## LR test              0    0.98

D

rest.bettal <- matrix(c(0,-1,0,0,0,1), c(3,2))
a.rbettal <- blrtest(fundaaa, H=rest.bettal, r=1)
summary(a.rbettal)
## 
## ###################### 
## # Johansen-Procedure # 
## ###################### 
## 
## Estimation and testing under linear restrictions on beta 
## 
## The VECM has been estimated subject to: 
## beta=H*phi and/or alpha=A*psi
## 
##      [,1] [,2]
## [1,]    0    0
## [2,]   -1    0
## [3,]    0    1
## 
## Eigenvalues of restricted VAR (lambda):
## [1] 0.0062 0.0001
## 
## The value of the likelihood ratio test statistic:
## 38.3 distributed as chi square with 1 df.
## The p-value of the test statistic is: 0 
## 
## Eigenvectors, normalised to first column
## of the restricted VAR:
## 
##      [,1] [,2]
## [1,]  NaN  NaN
## [2,] -Inf  Inf
## [3,]  Inf  Inf
## 
## Weights W of the restricted VAR:
## 
##        [,1] [,2]
## fund.d  NaN  NaN
## aaa.d   NaN  NaN
plotres(fundaaa)