Base de datos sobre salarios en EEUU

setwd("/Users/luisaavila/Desktop/Base de Datos")
library(party)
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
adult <- read.csv("bases.csv")
table(adult$class)
## 
##     0     1 
##  7841 24720
total<-24720+7841
total
## [1] 32561
class1<-24710
class0<-7841
percent1<-class1/total
percent1
## [1] 0.7588833
percent0<-class0/total
percent0
## [1] 0.2408096
entropyparent<- -((percent0)*(log(percent0,2)))-((percent1)*(log(percent1,2)))
entropyparent
## [1] 0.7967049
frma0class1<-nrow(adult[adult$marital == 0 & adult$class==1,])
frma0class0<-nrow(adult[adult$marital == 0 & adult$class==0,])
frma1class1<-nrow(adult[adult$marital == 1 & adult$class==1,])
frma1class0<-nrow(adult[adult$marital == 1 & adult$class==0,])
frma2class1<-nrow(adult[adult$marital == 2 & adult$class==1,])
frma2class0<-nrow(adult[adult$marital == 2 & adult$class==0,])
frma3class1<-nrow(adult[adult$marital == 3 & adult$class==1,])
frma3class0<-nrow(adult[adult$marital == 3 & adult$class==0,])
frma4class1<-nrow(adult[adult$marital == 4 & adult$class==1,])
frma4class0<-nrow(adult[adult$marital == 4 & adult$class==0,])
frma5class1<-nrow(adult[adult$marital == 5 & adult$class==1,])
frma5class0<-nrow(adult[adult$marital == 5 & adult$class==0,])
frma6class1<-nrow(adult[adult$marital == 6 & adult$class==1,])
frma6class0<-nrow(adult[adult$marital == 6 & adult$class==0,])
ma0per1<-frma0class1/class1
ma0per0<-frma0class0/class0
ma1per1<-frma1class1/class1
ma1per0<-frma1class0/class0
ma2per1<-frma2class1/class1
ma2per0<-frma2class0/class0
ma3per1<-frma3class1/class1
ma3per0<-frma3class0/class0
ma4per1<-frma4class1/class1
ma4per0<-frma4class0/class0
ma5per1<-frma5class1/class1
ma5per0<-frma5class0/class0
ma6per1<-frma6class1/class1
ma6per0<-frma6class0/class0
IGma0<-entropyparent-(((ma0per1)^2*(log(ma0per1,2)))+((ma0per0)^2*(log(ma0per0,2))))
IGma1<-entropyparent-(((ma1per1)^2*(log(ma1per1,2)))+((ma1per0)^2*(log(ma1per0,2))))
IGma2<-entropyparent-(((ma2per1)^2*(log(ma2per1,2)))+((ma2per0)^2*(log(ma2per0,2))))
IGma3<-entropyparent-(((ma3per1)^2*(log(ma3per1,2)))+((ma3per0)^2*(log(ma3per0,2))))
IGma4<-entropyparent-(((ma4per1)^2*(log(ma4per1,2)))+((ma4per0)^2*(log(ma4per0,2))))
IGma5<-entropyparent-(((ma5per1)^2*(log(ma5per1,2)))+((ma5per0)^2*(log(ma5per0,2))))
IGma6<-entropyparent-(((ma6per1)^2*(log(ma6per1,2)))+((ma6per0)^2*(log(ma6per0,2))))
IGma0
## [1] 1.029743
IGma1
## [1] 1.140425
IGma2
## [1] 0.8792781
IGma3
## [1] 0.7983034
IGma4
## [1] 0.8042535
IGma5
## [1] 0.7967235
IGma6
## [1] 0.8039078
frsex0class1<-nrow(adult[adult$sex == 0 & adult$class==1,])
frsex0class0<-nrow(adult[adult$sex == 0 & adult$class==0,])
frsex1class1<-nrow(adult[adult$sex == 1 & adult$class==1,])
frsex1class0<-nrow(adult[adult$sex == 1 & adult$class==0,])
sex0per1<-frsex0class1/class1
sex0per0<-frsex0class0/class0
sex1per1<-frsex1class1/class1
sex1per0<-frsex1class0/class0
IGsex0<-entropyparent-(((sex0per1)^2*(log(sex0per1,2)))+((sex0per0)^2*(log(sex0per0,2))))
IGsex1<-entropyparent-(((sex1per1)^2*(log(sex1per1,2)))+((sex1per0)^2*(log(sex1per0,2))))
IGsex0
## [1] 1.064222
IGsex1
## [1] 1.231729
frwo0class1<-nrow(adult[adult$workclass == 0 & adult$class==1,])
frwo0class0<-nrow(adult[adult$workclass == 0 & adult$class==0,])
frwo1class1<-nrow(adult[adult$workclass == 1 & adult$class==1,])
frwo1class0<-nrow(adult[adult$workclass == 1 & adult$class==0,])
frwo2class1<-nrow(adult[adult$workclass == 2 & adult$class==1,])
frwo2class0<-nrow(adult[adult$workclass == 2 & adult$class==0,])
frwo3class1<-nrow(adult[adult$workclass == 3 & adult$class==1,])
frwo3class0<-nrow(adult[adult$workclass == 3 & adult$class==0,])
frwo4class1<-nrow(adult[adult$workclass == 4 & adult$class==1,])
frwo4class0<-nrow(adult[adult$workclass == 4 & adult$class==0,])
frwo5class1<-nrow(adult[adult$workclass == 5 & adult$class==1,])
frwo5class0<-nrow(adult[adult$workclass == 5 & adult$class==0,])
frwo6class1<-nrow(adult[adult$workclass == 6 & adult$class==1,])
frwo6class0<-nrow(adult[adult$workclass == 6 & adult$class==0,])
frwo7class1<-nrow(adult[adult$workclass == 7 & adult$class==1,])
frwo7class0<-nrow(adult[adult$workclass == 7 & adult$class==0,])
wo0per1<-frwo0class1/class1
wo0per0<-frwo0class0/class0
wo1per1<-frwo1class1/class1
wo1per0<-frwo1class0/class0
wo2per1<-frwo2class1/class1
wo2per0<-frwo2class0/class0
wo3per1<-frwo3class1/class1
wo3per0<-frwo3class0/class0
wo4per1<-frwo4class1/class1
wo4per0<-frwo4class0/class0
wo5per1<-frwo5class1/class1
wo5per0<-frwo5class0/class0
wo6per1<-frwo6class1/class1
wo6per0<-frwo6class0/class0
wo7per1<-frwo7class1/class1
wo7per0<-frwo7class0/class0
IGwo0<-entropyparent-(((wo0per1)^2*(log(wo0per1,2)))+((wo0per0)^2*(log(wo0per0,2))))
IGwo1<-entropyparent-(((wo1per1)^2*(log(wo1per1,2)))+((wo1per0)^2*(log(wo1per0,2))))
IGwo2<-entropyparent-(((wo2per1)^2*(log(wo2per1,2)))+((wo2per0)^2*(log(wo2per0,2))))
IGwo3<-entropyparent-(((wo3per1)^2*(log(wo3per1,2)))+((wo3per0)^2*(log(wo3per0,2))))
IGwo4<-entropyparent-(((wo4per1)^2*(log(wo4per1,2)))+((wo4per0)^2*(log(wo4per0,2))))
IGwo5<-entropyparent-(((wo5per1)^2*(log(wo5per1,2)))+((wo5per0)^2*(log(wo5per0,2))))
IGwo6<-entropyparent-(((wo6per1)^2*(log(wo6per1,2)))+((wo6per0)^2*(log(wo6per0,2))))
IGwo7<-entropyparent-(((wo7per1)^2*(log(wo7per1,2)))+((wo7per0)^2*(log(wo7per0,2))))
IGwo0
## [1] 1.273915
IGwo1
## [1] 0.8945661
IGwo2
## [1] 0.8583088
IGwo3
## [1] 0.8445803
IGwo4
## [1] 0.87914
IGwo5
## [1] 0.8509839
IGwo6
## [1] 0.8174498
IGwo7
## [1] 0.8173292
frra0class1<-nrow(adult[adult$race == 0 & adult$class==1,])
frra0class0<-nrow(adult[adult$race == 0 & adult$class==0,])
frra1class1<-nrow(adult[adult$race == 1 & adult$class==1,])
frra1class0<-nrow(adult[adult$race == 1 & adult$class==0,])
frra2class1<-nrow(adult[adult$race == 2 & adult$class==1,])
frra2class0<-nrow(adult[adult$race == 2 & adult$class==0,])
frra3class1<-nrow(adult[adult$race == 3 & adult$class==1,])
frra3class0<-nrow(adult[adult$race == 3 & adult$class==0,])
frra4class1<-nrow(adult[adult$race == 4 & adult$class==1,])
frra4class0<-nrow(adult[adult$race == 4 & adult$class==0,])
ra0per1<-frra0class1/class1
ra0per0<-frra0class0/class0
ra1per1<-frra1class1/class1
ra1per0<-frra1class0/class0
ra2per1<-frra2class1/class1
ra2per0<-frra2class0/class0
ra3per1<-frra3class1/class1
ra3per0<-frra3class0/class0
ra4per1<-frra4class1/class1
ra4per0<-frra4class0/class0
IGra0<-entropyparent-(((ra0per1)^2*(log(ra0per1,2)))+((ra0per0)^2*(log(ra0per0,2))))
IGra1<-entropyparent-(((ra1per1)^2*(log(ra1per1,2)))+((ra1per0)^2*(log(ra1per0,2))))
IGra2<-entropyparent-(((ra2per1)^2*(log(ra2per1,2)))+((ra2per0)^2*(log(ra2per0,2))))
IGra3<-entropyparent-(((ra3per1)^2*(log(ra3per1,2)))+((ra3per0)^2*(log(ra3per0,2))))
IGra4<-entropyparent-(((ra4per1)^2*(log(ra4per1,2)))+((ra4per0)^2*(log(ra4per0,2))))
IGra0
## [1] 1.091163
IGra1
## [1] 0.8462253
IGra2
## [1] 0.807471
IGra3
## [1] 0.7976724
IGra4
## [1] 0.7974483
res<-ctree(formula(class ~ workclass + race + sex + marital),adult)
plot(res)

adult1<-read.csv("adult.csv")
res<-ctree(formula(class ~ workclass),adult1)
plot(res)

res<-ctree(formula(class ~ race),adult1)
plot(res)

res<-ctree(formula(class ~ sex),adult1)
plot(res)

res<-ctree(formula(class ~ education),adult1)
plot(res)

res<-ctree(formula(class ~ marital),adult1)
plot(res)

Base de datos sobre accidentes de transito en Guatemala

autos<-read.csv("autos.csv")
table(autos$class)
## 
##    0    1 
##  496 5827
total<-496+5827
class0<-496
class1<-5827
percent0<-class0/total
percent1<-class1/total
entropyparent<- -((percent0)*(log(percent0,2)))-((percent1)*(log(percent1,2)))
entropyparent
## [1] 0.3966719
frar1class1<-nrow(autos[autos$area == 1 & autos$class==1,])
frar1class0<-nrow(autos[autos$area == 1 & autos$class==0,])
frar2class1<-nrow(autos[autos$area == 2 & autos$class==1,])
frar2class0<-nrow(autos[autos$area == 2 & autos$class==0,])
ar1per1<-frar1class1/class1
ar1per0<-frar1class0/class0
ar2per1<-frar2class1/class1
ar2per0<-frar2class0/class0
IGar1<-entropyparent-(((ar1per1)^2*(log(ar1per1,2)))+((ar1per0)^2*(log(ar1per0,2))))
IGar2<-entropyparent-(((ar2per1)^2*(log(ar2per1,2)))+((ar2per0)^2*(log(ar2per0,2))))
IGar1
## [1] 0.6788437
IGar2
## [1] 0.8452003
fres1class1<-nrow(autos[autos$estado == 1 & autos$class==1,])
fres1class0<-nrow(autos[autos$estado == 1 & autos$class==0,])
fres2class1<-nrow(autos[autos$estado == 2 & autos$class==1,])
fres2class0<-nrow(autos[autos$estado == 2 & autos$class==0,])
es1per1<-fres1class1/class1
es1per0<-fres1class0/class0
es2per1<-fres2class1/class1
es2per0<-fres2class0/class0
IGes1<-entropyparent-(((es1per1)^2*(log(es1per1,2)))+((es1per0)^2*(log(es1per0,2))))
IGes2<-entropyparent-(((es2per1)^2*(log(es2per1,2)))+((es2per0)^2*(log(es2per0,2))))
IGes1
## [1] 0.4806411
IGes2
## [1] 0.7760622
frse1class1<-nrow(autos[autos$sexo == 1 & autos$class==1,])
frse1class0<-nrow(autos[autos$sexo == 1 & autos$class==0,])
frse2class1<-nrow(autos[autos$sexo == 2 & autos$class==1,])
frse2class0<-nrow(autos[autos$sexo == 2 & autos$class==0,])
se1per1<-frse1class1/class1
se1per0<-frse1class0/class0
se2per1<-frse2class1/class1
se2per0<-frse2class0/class0
IGse1<-entropyparent-(((se1per1)^2*(log(se1per1,2)))+((se1per0)^2*(log(se1per0,2))))
IGse2<-entropyparent-(((se2per1)^2*(log(se2per1,2)))+((se2per0)^2*(log(se2per0,2))))
IGse1
## [1] 0.6633815
IGse2
## [1] 0.4223983
frti1class1<-nrow(autos[autos$tipo == 1 & autos$class==1,])
frti1class0<-nrow(autos[autos$tipo == 1 & autos$class==0,])
frti2class1<-nrow(autos[autos$tipo == 2 & autos$class==1,])
frti2class0<-nrow(autos[autos$tipo == 2 & autos$class==0,])
frti3class1<-nrow(autos[autos$tipo == 3 & autos$class==1,])
frti3class0<-nrow(autos[autos$tipo == 3 & autos$class==0,])
frti4class1<-nrow(autos[autos$tipo == 4 & autos$class==1,])
frti4class0<-nrow(autos[autos$tipo == 4 & autos$class==0,])
frti5class1<-nrow(autos[autos$tipo == 5 & autos$class==1,])
frti5class0<-nrow(autos[autos$tipo == 5 & autos$class==0,])
frti6class1<-nrow(autos[autos$tipo == 6 & autos$class==1,])
frti6class0<-nrow(autos[autos$tipo == 6 & autos$class==0,])
frti7class1<-nrow(autos[autos$tipo == 7 & autos$class==1,])
frti7class0<-nrow(autos[autos$tipo == 7 & autos$class==0,])
frti8class1<-nrow(autos[autos$tipo == 8 & autos$class==1,])
frti8class0<-nrow(autos[autos$tipo == 8 & autos$class==0,])
frti9class1<-nrow(autos[autos$tipo == 9 & autos$class==1,])
frti9class0<-nrow(autos[autos$tipo == 9 & autos$class==0,])
frti10class1<-nrow(autos[autos$tipo == 10 & autos$class==1,])
frti10class0<-nrow(autos[autos$tipo == 10 & autos$class==0,])
frti11class1<-nrow(autos[autos$tipo == 11 & autos$class==1,])
frti11class0<-nrow(autos[autos$tipo == 11 & autos$class==0,])
frti12class1<-nrow(autos[autos$tipo == 12 & autos$class==1,])
frti12class0<-nrow(autos[autos$tipo == 12 & autos$class==0,])
frti13class1<-nrow(autos[autos$tipo == 13 & autos$class==1,])
frti13class0<-nrow(autos[autos$tipo == 13 & autos$class==0,])
frti14class1<-nrow(autos[autos$tipo == 14 & autos$class==1,])
frti14class0<-nrow(autos[autos$tipo == 14 & autos$class==0,])
frti15class1<-nrow(autos[autos$tipo == 15 & autos$class==1,])
frti15class0<-nrow(autos[autos$tipo == 15 & autos$class==0,])
frti16class1<-nrow(autos[autos$tipo == 16 & autos$class==1,])
frti16class0<-nrow(autos[autos$tipo == 16 & autos$class==0,])
ti1per1<-frti1class1/class1
ti1per0<-frti1class0/class0
ti2per1<-frti2class1/class1
ti2per0<-frti2class0/class0
ti3per1<-frti3class1/class1
ti3per0<-frti3class0/class0
ti4per1<-frti4class1/class1
ti4per0<-frti4class0/class0
ti5per1<-frti5class1/class1
ti5per0<-frti5class0/class0
ti6per1<-frti6class1/class1
ti6per0<-frti6class0/class0
ti7per1<-frti7class1/class1
ti7per0<-frti7class0/class0
ti8per1<-frti8class1/class1
ti8per0<-frti8class0/class0
ti9per1<-frti9class1/class1
ti9per0<-frti9class0/class0
ti10per1<-frti10class1/class1
ti10per0<-frti10class0/class0
ti11per1<-frti11class1/class1
ti11per0<-frti11class0/class0
ti12per1<-frti12class1/class1
ti12per0<-frti12class0/class0
ti13per1<-frti13class1/class1
ti13per0<-frti13class0/class0
ti14per1<-frti14class1/class1
ti14per0<-frti14class0/class0
ti15per1<-frti15class1/class1
ti15per0<-frti15class0/class0
ti16per1<-frti16class1/class1
ti16per0<-frti16class0/class0
IGti1<-entropyparent-(((ti1per1)^2*(log(ti1per1,2)))+((ti1per0)^2*(log(ti1per0,2))))
IGti2<-entropyparent-(((ti2per1)^2*(log(ti2per1,2))+((ti2per0)^2*(log(ti2per0,2)))))
IGti3<-entropyparent-(((ti3per1)^2*(log(ti3per1,2)))+((ti3per0)^2*(log(ti3per0,2))))
IGti4<-entropyparent-(((ti4per1)^2*(log(ti4per1,2)))+((ti4per0)^2*(log(ti4per0,2))))
IGti5<-entropyparent-(((ti5per1)^2*(log(ti5per1,2)))+((ti5per0)^2*(log(ti5per0,2))))
IGti6<-entropyparent-(((ti6per1)^2*(log(ti6per1,2)))+((ti6per0)^2*(log(ti6per0,2))))
IGti7<-entropyparent-(((ti7per1)^2*(log(ti7per1,2)))+((ti7per0)^2*(log(ti7per0,2))))
IGti8<-entropyparent-(((ti8per1)^2*(log(ti8per1,2)))+((ti8per0)^2*(log(ti8per0,2))))
IGti9<-entropyparent-(((ti9per1)^2*(log(ti9per1,2)))+((ti9per0)^2*(log(ti9per0,2))))
IGti10<-entropyparent-(((ti10per1)^2*(log(ti10per1,2)))+((ti10per0)^2*(log(ti10per0,2))))
IGti11<-entropyparent-(((ti11per1)^2*(log(ti11per1,2)))+((ti11per0)^2*(log(ti11per0,2))))
IGti12<-entropyparent-(((ti12per1)^2*(log(ti12per1,2)))+((ti12per0)^2*(log(ti12per0,2))))
IGti13<-entropyparent-(((ti13per1)^2*(log(ti13per1,2)))+((ti13per0)^2*(log(ti13per0,2))))
IGti14<-entropyparent-(((ti14per1)^2*(log(ti14per1,2)))+((ti14per0)^2*(log(ti14per0,2))))
IGti15<-entropyparent-(((ti15per1)^2*(log(ti15per1,2))+((ti15per0)^2*(log(ti15per0,2)))))
IGti16<-entropyparent-(((ti16per1)^2*(log(ti16per1,2)))+((ti16per0)^2*(log(ti16per0,2))))
IGti1
## [1] 0.6188495
IGti2
## [1] 0.5545689
IGti3
## [1] 0.717822
IGti4
## [1] 0.4173946
IGti5
## [1] 0.423844
IGti6
## [1] 0.3974717
IGti7
## [1] 0.4043185
IGti8
## [1] NaN
IGti9
## [1] 0.4049244
IGti10
## [1] 0.4047676
IGti11
## [1] NaN
IGti12
## [1] NaN
IGti13
## [1] 0.4139024
IGti14
## [1] 0.4026225
IGti15
## [1] 0.3971267
IGti16
## [1] 0.3969443
frco1class1<-nrow(autos[autos$color == 1 & autos$class==1,])
frco1class0<-nrow(autos[autos$color == 1 & autos$class==0,])
frco2class1<-nrow(autos[autos$color == 2 & autos$class==1,])
frco2class0<-nrow(autos[autos$color == 2 & autos$class==0,])
frco3class1<-nrow(autos[autos$color == 3 & autos$class==1,])
frco3class0<-nrow(autos[autos$color == 3 & autos$class==0,])
frco4class1<-nrow(autos[autos$color == 4 & autos$class==1,])
frco4class0<-nrow(autos[autos$color == 4 & autos$class==0,])
frco5class1<-nrow(autos[autos$color == 5 & autos$class==1,])
frco5class0<-nrow(autos[autos$color == 5 & autos$class==0,])
frco6class1<-nrow(autos[autos$color == 6 & autos$class==1,])
frco6class0<-nrow(autos[autos$color == 6 & autos$class==0,])
frco7class1<-nrow(autos[autos$color == 7 & autos$class==1,])
frco7class0<-nrow(autos[autos$color == 7 & autos$class==0,])
frco8class1<-nrow(autos[autos$color == 8 & autos$class==1,])
frco8class0<-nrow(autos[autos$color == 8 & autos$class==0,])
frco9class1<-nrow(autos[autos$color == 9 & autos$class==1,])
frco9class0<-nrow(autos[autos$color == 9 & autos$class==0,])
frco10class1<-nrow(autos[autos$color == 10 & autos$class==1,])
frco10class0<-nrow(autos[autos$color == 10 & autos$class==0,])
frco11class1<-nrow(autos[autos$color == 11 & autos$class==1,])
frco11class0<-nrow(autos[autos$color == 11 & autos$class==0,])
frco12class1<-nrow(autos[autos$color == 12 & autos$class==1,])
frco12class0<-nrow(autos[autos$color == 12 & autos$class==0,])
frco13class1<-nrow(autos[autos$color == 13 & autos$class==1,])
frco13class0<-nrow(autos[autos$color == 13 & autos$class==0,])
frco14class1<-nrow(autos[autos$color == 14 & autos$class==1,])
frco14class0<-nrow(autos[autos$color == 14 & autos$class==0,])
frco15class1<-nrow(autos[autos$color == 15 & autos$class==1,])
frco15class0<-nrow(autos[autos$color == 15 & autos$class==0,])
frco16class1<-nrow(autos[autos$color == 16 & autos$class==1,])
frco16class0<-nrow(autos[autos$color == 16 & autos$class==0,])
co1per1<-frco1class1/class1
co1per0<-frco1class0/class0
co2per1<-frco2class1/class1
co2per0<-frco2class0/class0
co3per1<-frco3class1/class1
co3per0<-frco3class0/class0
co4per1<-frco4class1/class1
co4per0<-frco4class0/class0
co5per1<-frco5class1/class1
co5per0<-frco5class0/class0
co6per1<-frco6class1/class1
co6per0<-frco6class0/class0
co7per1<-frco7class1/class1
co7per0<-frco7class0/class0
co8per1<-frco8class1/class1
co8per0<-frco8class0/class0
co9per1<-frco9class1/class1
co9per0<-frco9class0/class0
co10per1<-frco10class1/class1
co10per0<-frco10class0/class0
co11per1<-frco11class1/class1
co11per0<-frco11class0/class0
co12per1<-frco12class1/class1
co12per0<-frco12class0/class0
co13per1<-frco13class1/class1
co13per0<-frco13class0/class0
co14per1<-frco14class1/class1
co14per0<-frco14class0/class0
co15per1<-frco15class1/class1
co15per0<-frco15class0/class0
co16per1<-frco16class1/class1
co16per0<-frco16class0/class0
IGco1<-entropyparent-(((co1per1)^2*(log(co1per1,2)))+((co1per0)^2*(log(co1per0,2))))
IGco2<-entropyparent-(((co2per1)^2*(log(co2per1,2))+((co2per0)^2*(log(co2per0,2)))))
IGco3<-entropyparent-(((co3per1)^2*(log(co3per1,2)))+((co3per0)^2*(log(co3per0,2))))
IGco4<-entropyparent-(((co4per1)^2*(log(co4per1,2)))+((co4per0)^2*(log(co4per0,2))))
IGco5<-entropyparent-(((co5per1)^2*(log(co5per1,2)))+((co5per0)^2*(log(co5per0,2))))
IGco6<-entropyparent-(((co6per1)^2*(log(co6per1,2)))+((co6per0)^2*(log(co6per0,2))))
IGco7<-entropyparent-(((co7per1)^2*(log(co7per1,2)))+((co7per0)^2*(log(co7per0,2))))
IGco8<-entropyparent-(((co8per1)^2*(log(co8per1,2)))+((co8per0)^2*(log(co8per0,2))))
IGco9<-entropyparent-(((co9per1)^2*(log(co9per1,2)))+((co9per0)^2*(log(co9per0,2))))
IGco10<-entropyparent-(((co10per1)^2*(log(co10per1,2)))+((co10per0)^2*(log(co10per0,2))))
IGco11<-entropyparent-(((co11per1)^2*(log(co11per1,2)))+((co11per0)^2*(log(co11per0,2))))
IGco12<-entropyparent-(((co12per1)^2*(log(co12per1,2)))+((co12per0)^2*(log(co12per0,2))))
IGco13<-entropyparent-(((co13per1)^2*(log(co13per1,2)))+((co13per0)^2*(log(co13per0,2))))
IGco14<-entropyparent-(((co14per1)^2*(log(co14per1,2)))+((co14per0)^2*(log(co14per0,2))))
IGco15<-entropyparent-(((co15per1)^2*(log(co15per1,2))+((co15per0)^2*(log(co15per0,2)))))
IGco16<-entropyparent-(((co16per1)^2*(log(co16per1,2)))+((co16per0)^2*(log(co16per0,2))))
IGco1
## [1] 0.5092624
IGco2
## [1] 0.4659037
IGco3
## [1] 0.4227593
IGco4
## [1] 0.5216799
IGco5
## [1] 0.4949885
IGco6
## [1] 0.4524867
IGco7
## [1] 0.3997215
IGco8
## [1] 0.4033861
IGco9
## [1] 0.4095547
IGco10
## [1] NaN
IGco11
## [1] 0.3980458
IGco12
## [1] 0.3971709
IGco13
## [1] 0.3984783
IGco14
## [1] NaN
IGco15
## [1] NaN
IGco16
## [1] NaN
frem1class1<-nrow(autos[autos$diasem == 1 & autos$class==1,])
frem1class0<-nrow(autos[autos$diasem == 1 & autos$class==0,])
frem2class1<-nrow(autos[autos$diasem == 2 & autos$class==1,])
frem2class0<-nrow(autos[autos$diasem == 2 & autos$class==0,])
frem3class1<-nrow(autos[autos$diasem == 3 & autos$class==1,])
frem3class0<-nrow(autos[autos$diasem == 3 & autos$class==0,])
frem4class1<-nrow(autos[autos$diasem == 4 & autos$class==1,])
frem4class0<-nrow(autos[autos$diasem == 4 & autos$class==0,])
frem5class1<-nrow(autos[autos$diasem == 5 & autos$class==1,])
frem5class0<-nrow(autos[autos$diasem == 5 & autos$class==0,])
frem6class1<-nrow(autos[autos$diasem == 6 & autos$class==1,])
frem6class0<-nrow(autos[autos$diasem == 6 & autos$class==0,])
frem7class1<-nrow(autos[autos$diasem == 7 & autos$class==1,])
frem7class0<-nrow(autos[autos$diasem == 7 & autos$class==0,])
em1per1<-frem1class1/class1
em1per0<-frem1class0/class0
em2per1<-frem2class1/class1
em2per0<-frem2class0/class0
em3per1<-frem3class1/class1
em3per0<-frem3class0/class0
em4per1<-frem4class1/class1
em4per0<-frem4class0/class0
em5per1<-frem5class1/class1
em5per0<-frem5class0/class0
em6per1<-frem6class1/class1
em6per0<-frem6class0/class0
em7per1<-frem7class1/class1
em7per0<-frem7class0/class0
IGem1<-entropyparent-(((em1per1)^2*(log(em1per1,2)))+((em1per0)^2*(log(em1per0,2))))
IGem2<-entropyparent-(((em2per1)^2*(log(em2per1,2))+((em2per0)^2*(log(em2per0,2)))))
IGem3<-entropyparent-(((em3per1)^2*(log(em3per1,2)))+((em3per0)^2*(log(em3per0,2))))
IGem4<-entropyparent-(((em4per1)^2*(log(em4per1,2)))+((em4per0)^2*(log(em4per0,2))))
IGem5<-entropyparent-(((em5per1)^2*(log(em5per1,2)))+((em5per0)^2*(log(em5per0,2))))
IGem6<-entropyparent-(((em6per1)^2*(log(em6per1,2)))+((em6per0)^2*(log(em6per0,2))))
IGem7<-entropyparent-(((em7per1)^2*(log(em7per1,2)))+((em7per0)^2*(log(em7per0,2))))
IGem1
## [1] 0.4805784
IGem2
## [1] 0.474776
IGem3
## [1] 0.4795193
IGem4
## [1] 0.5024385
IGem5
## [1] 0.500301
IGem6
## [1] 0.5607403
IGem7
## [1] 0.5909634