PKD1 <- read.csv("PKD1.csv")
PKD2 <- read.csv("PKD2.csv")
#Top mutations by clinical significance
PKD1_CS <- PKD1 %>%
select(Region, Codon, Amino.Acid.Change, Mutation.Type, Clinical.Significance) %>%
group_by(Clinical.Significance, Region) %>%
tally() %>%
filter(n!=1) %>%
filter(Clinical.Significance != "Likely Hypomorphic") %>%
filter(Clinical.Significance != "Indeterminate") %>%
arrange(desc(n)) %>%
top_n(5)
## Selecting by n
PKD1_CS$Region <- factor(PKD1_CS$Region, levels =
PKD1_CS$Region[order(-PKD1_CS$n)])
a <- ggplot(PKD1_CS, aes( x = Region, y = n, fill=Clinical.Significance)) +
geom_bar(stat = "identity") +
labs(title = "Total Number of Mutations in PKD1 Gene by Exon",
y = "# of Mutations") + coord_flip()
ggplotly()
#PKD2
PKD2_CS <- PKD2 %>%
select(Region, Codon, Amino.Acid.Change, Mutation.Type, Clinical.Significance) %>%
group_by(Clinical.Significance, Region) %>%
tally() %>%
filter(n!=1) %>%
filter(Clinical.Significance != "Likely Hypomorphic") %>%
filter(Clinical.Significance != "Indeterminate") %>%
arrange(desc(n)) %>%
top_n(5)
## Selecting by n
PKD2_CS$Region <- factor(PKD2_CS$Region, levels =
PKD2_CS$Region[order(-PKD2_CS$n)])
b <- ggplot(PKD2_CS, aes( x = Region, y = n, fill=Clinical.Significance)) +
geom_bar(stat = "identity") +
labs(title = "Total Number of Mutations in PKD2 Gene by Exon",
y = "# of Mutations") + coord_flip()
ggplotly()
#Mutation Type vs. Clinical Significance
PKD1_MT <- PKD1 %>%
select(Region, Codon, Amino.Acid.Change, Mutation.Type, Clinical.Significance) %>%
group_by(Clinical.Significance, Mutation.Type) %>%
tally() %>%
filter(n!=1) %>%
filter(Clinical.Significance != "Likely Hypomorphic") %>%
filter(Clinical.Significance != "Indeterminate") %>%
filter(Mutation.Type != "SYNONYMOUS") %>%
arrange(Clinical.Significance) %>%
arrange(desc(n))
PKD1_MT$Mutation.Type <- factor(PKD1_MT$Mutation.Type, levels =
PKD1_MT$Mutation.Type[order(-PKD1_MT$n)])
c <- ggplot(PKD1_MT, aes(x = Mutation.Type, y = n, fill= Clinical.Significance)) +
geom_bar(stat = "Identity") +
labs(title = "Total Number of Mutations in PKD1 Gene by Mutation Type",
y = "# of Mutations", x = "Mutation Type") + coord_flip()
ggplotly()
PKD2_MT <- PKD2 %>%
select(Region, Codon, Amino.Acid.Change, Mutation.Type, Clinical.Significance) %>%
group_by(Clinical.Significance, Mutation.Type) %>%
tally() %>%
filter(n!=1) %>%
filter(Clinical.Significance != "Likely Hypomorphic") %>%
filter(Clinical.Significance != "Indeterminate") %>%
filter(Mutation.Type != "SYNONYMOUS") %>%
arrange(Clinical.Significance) %>%
arrange(desc(n))
PKD2_MT$Mutation.Type <- factor(PKD2_MT$Mutation.Type, levels =
PKD2_MT$Mutation.Type[order(-PKD2_MT$n)])
d <- ggplot(PKD2_MT, aes(x = Mutation.Type, y = n, fill= Clinical.Significance)) +
geom_bar(stat = "Identity") +
labs(title = "Total Number of Mutations in PKD2 Gene by Mutation Type",
y = "# of Mutations", x = "Type of Mutation") + coord_flip()
ggplotly()
## Selecting by n
## Selecting by n