Pregunta 1

1.A) Serie Cronologica: Es una secuencia de datos medidos en determinado momentos y ordenados en una secuencia cronologica determinada.

1.B Se utiliza procesando se??ales, sirve para encontrar patrones repetitivos dentro de una se??al.

1.C Es una prueba para comprobar si existe correlacion.

Pregunta 2

La autocorrelacion cambia la significancia por que subestima las varianzas por lo que se podria cometer un error de darle significancia a un coeficiente que no deberia de ser tomado en cuenta.

Pregunta 3

library("gdata")
## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
## 
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
## 
## Attaching package: 'gdata'
## The following object is masked from 'package:stats':
## 
##     nobs
## The following object is masked from 'package:utils':
## 
##     object.size
library("lmtest")
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
cb = read.xls("/Users/ferarevalo1/Documents/Econometria 1 /CasoB.xls")
reg3 = lm(formula = cb$Cpdes ~ cb$ppib, data = cb)
summary(reg3)
## 
## Call:
## lm(formula = cb$Cpdes ~ cb$ppib, data = cb)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6865 -0.2715 -0.0728  0.3053  6.9449 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.3222     0.4312   3.066 0.004036 ** 
## cb$ppib      -0.4477     0.1224  -3.658 0.000787 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.669 on 37 degrees of freedom
## Multiple R-squared:  0.2656, Adjusted R-squared:  0.2457 
## F-statistic: 13.38 on 1 and 37 DF,  p-value: 0.0007874
dwtest(reg3)
## 
##  Durbin-Watson test
## 
## data:  reg3
## DW = 2.9747, p-value = 0.9994
## alternative hypothesis: true autocorrelation is greater than 0
resid(reg3)
##            1            2            3            4            5 
##  0.574620051 -0.890795191  1.488293261  0.295531598  0.137354693 
##            6            7            8            9           10 
##  0.185075824 -0.234227005 -0.156478852  0.297140317 -0.072832662 
##           11           12           13           14           15 
##  0.592582580 -0.198570365 -6.686505873  6.944861448 -0.689454891 
##           16           17           18           19           20 
## -0.186505873  0.089633561 -0.171492362 -0.211706739  0.900089335 
##           21           22           23           24           25 
## -0.623771231 -0.286505873 -0.702859683  0.134405674  0.192582580 
##           26           27           28           29           30 
##  0.247810467  0.526898919  0.313494127 -0.129669268  0.583735524 
##           31           32           33           34           35 
## -0.002859683 -0.255138552 -0.334227005 -0.613315457 -0.471492362 
##           36           37           38           39 
## -0.256478852  0.610813527  0.321000882 -1.261036589
 barplot(resid(reg3))

### Aqui podemos ver que hay autocorrelacion negativa

cb$errorcuad = (resid(reg3))^2
cb$xcuad = cb$ppib^2
reg4 = lm(formula = cb$errorcuad~cb$ppib+cb$xcuad, data = cb)
summary(reg4)
## 
## Call:
## lm(formula = cb$errorcuad ~ cb$ppib + cb$xcuad, data = cb)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.313 -3.164 -2.813 -1.768 44.921 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   1.5646     2.7558   0.568    0.574
## cb$ppib       0.8824     1.2486   0.707    0.484
## cb$xcuad     -0.1096     0.2521  -0.435    0.666
## 
## Residual standard error: 10.54 on 36 degrees of freedom
## Multiple R-squared:  0.0147, Adjusted R-squared:  -0.04004 
## F-statistic: 0.2686 on 2 and 36 DF,  p-value: 0.766
v = 0.0147*39

Con este valor critico podemos determinar que no hay heterosticidad

cac = read.xls(“/Users/ferarevalo1/Documents/Econometria 1 /Caso C .xlsx”)

cac = read.xls("/Users/ferarevalo1/Documents/Econometria 1 /Caso C .xlsx")
reg5 = lm(formula = cac$Cambio~cac$Crecimiento, data = cac)
summary(reg5)
## 
## Call:
## lm(formula = cac$Cambio ~ cac$Crecimiento, data = cac)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2478 -0.7969  0.1877  0.7565  2.9353 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       1.3040     0.2853    4.57 0.000136 ***
## cac$Crecimiento  -0.3944     0.0337  -11.70 3.64e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.326 on 23 degrees of freedom
## Multiple R-squared:  0.8562, Adjusted R-squared:   0.85 
## F-statistic:   137 on 1 and 23 DF,  p-value: 3.638e-11
dwtest(reg5)
## 
##  Durbin-Watson test
## 
## data:  reg5
## DW = 1.6062, p-value = 0.1261
## alternative hypothesis: true autocorrelation is greater than 0
q = resid(reg5)
barplot(q)

### Si hay autocorrelacion positiva

cac$ycuad = q^2
cac$xcuad = cac$Crecimiento^2
reg6 = lm(formula = cac$ycuad ~ cac$Cambio+cac$xcuad)
summary(reg6)
## 
## Call:
## lm(formula = cac$ycuad ~ cac$Cambio + cac$xcuad)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3869 -1.3843 -0.6847  0.1663  8.4382 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 1.510018   0.762964   1.979   0.0604 .
## cac$Cambio  0.236815   0.157494   1.504   0.1469  
## cac$xcuad   0.001263   0.007778   0.162   0.8725  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.591 on 22 degrees of freedom
## Multiple R-squared:  0.09384,    Adjusted R-squared:  0.01146 
## F-statistic: 1.139 on 2 and 22 DF,  p-value: 0.3383
vc = 0.09384*25
vc
## [1] 2.346

Aqui se puede ver que si hay heterosticidad