1. Andmefailis praktikum6.RData on tabel nimega suur.viisik. Selles on 30 Suure Viisiku kitsama alaomaduse skoori ehk iga isiksuseomaduse kohta 6 alaomadust. Tehke selle andmestiku kohta 5-faktoriline kinnitava faktoranalüüusi mudel, nii nagu Suure Viisiku teooria seda ette näeb. Hinnake sellise mudeli sobivust antud andmetele. Mudeli koostamiseks on vaja teda tabelis olevate muutujate nimesid. Need saab katte funktsiooni names abil.
names(suur.viisik)
## [1] "N1" "N2" "N3" "N4" "N5" "N6" "E1" "E2" "E3" "E4" "E5" "E6" "O1" "O2"
## [15] "O3" "O4" "O5" "O6" "A1" "A2" "A3" "A4" "A5" "A6" "C1" "C2" "C3" "C4"
## [29] "C5" "C6"
Uurige ka mudeli parameetrite tabelit. Vaadake iga faktori puhul, millised vaadeldud muutujatest laaduvad faktorile kõige tugevamalt ja millised kõige nõrgemalt? Millised faktorid on omavahel kõige tugevamalt ja millised kõige nõrgemalt korreleeritud? Uurige jääkdispersioonide abil, milliseid vaadeldud muutujad seletab antud mudel kõige halvemini?
mudelBig5 <- "
# defineerime latentsed tunnused
neurootilisus =~ N1 + N2 + N3 + N4 + N5 + N6
ekstravertsus =~ E1 + E2 + E3 + E4 + E5 + E6
avatus =~ O1 + O2 + O3 + O4 + O5 + O6
sotsiaalsus =~ A1 + A2 + A3 + A4 + A5 + A6
meelekindlus =~ C1 + C2 + C3 + C4 + C5 + C6 "
fitBig5 <- cfa(mudelBig5, data=suur.viisik)
summary(fitBig5, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-20) converged normally after 183 iterations
##
## Used Total
## Number of observations 369 393
##
## Estimator ML
## Minimum Function Test Statistic 2652.859
## Degrees of freedom 395
## P-value (Chi-square) 0.000
##
## Model test baseline model:
##
## Minimum Function Test Statistic 7360.097
## Degrees of freedom 435
## P-value 0.000
##
## User model versus baseline model:
##
## Comparative Fit Index (CFI) 0.674
## Tucker-Lewis Index (TLI) 0.641
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -32148.842
## Loglikelihood unrestricted model (H1) -30822.413
##
## Number of free parameters 70
## Akaike (AIC) 64437.684
## Bayesian (BIC) 64711.440
## Sample-size adjusted Bayesian (BIC) 64489.355
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.124
## 90 Percent Confidence Interval 0.120 0.129
## P-value RMSEA <= 0.05 0.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.141
##
## Parameter Estimates:
##
## Information Expected
## Standard Errors Standard
##
## Latent Variables:
## Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
## neurootilisus =~
## N1 1.000 5.158 0.826
## N2 0.771 0.054 14.259 0.000 3.978 0.680
## N3 1.126 0.056 19.976 0.000 5.808 0.867
## N4 0.887 0.049 17.932 0.000 4.577 0.805
## N5 0.680 0.054 12.524 0.000 3.510 0.613
## N6 0.795 0.046 17.298 0.000 4.103 0.785
## ekstravertsus =~
## E1 1.000 4.025 0.825
## E2 1.144 0.072 15.804 0.000 4.604 0.751
## E3 1.082 0.078 13.804 0.000 4.356 0.676
## E4 1.323 0.080 16.573 0.000 5.326 0.779
## E5 0.762 0.062 12.235 0.000 3.068 0.613
## E6 1.059 0.071 14.999 0.000 4.261 0.722
## avatus =~
## O1 1.000 2.872 0.499
## O2 1.471 0.182 8.091 0.000 4.223 0.686
## O3 1.106 0.134 8.281 0.000 3.177 0.730
## O4 0.773 0.127 6.087 0.000 2.220 0.422
## O5 1.508 0.191 7.908 0.000 4.331 0.652
## O6 0.477 0.091 5.228 0.000 1.370 0.344
## sotsiaalsus =~
## A1 1.000 3.809 0.689
## A2 0.809 0.093 8.706 0.000 3.080 0.526
## A3 0.911 0.077 11.858 0.000 3.470 0.811
## A4 0.683 0.074 9.202 0.000 2.603 0.560
## A5 0.275 0.087 3.141 0.002 1.046 0.182
## A6 0.539 0.062 8.733 0.000 2.055 0.528
## meelekindlus =~
## C1 1.000 4.109 0.837
## C2 0.914 0.059 15.529 0.000 3.757 0.717
## C3 0.907 0.056 16.226 0.000 3.728 0.740
## C4 1.190 0.063 18.847 0.000 4.889 0.820
## C5 1.252 0.059 21.088 0.000 5.144 0.882
## C6 0.914 0.068 13.434 0.000 3.758 0.643
##
## Covariances:
## Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
## neurootilisus ~~
## ekstravertsus -12.913 1.510 -8.550 0.000 -0.622 -0.622
## avatus -1.069 0.927 -1.153 0.249 -0.072 -0.072
## sotsiaalsus -7.299 1.350 -5.408 0.000 -0.371 -0.371
## meelekindlus -14.869 1.594 -9.326 0.000 -0.701 -0.701
## ekstravertsus ~~
## avatus 5.395 0.963 5.604 0.000 0.467 0.467
## sotsiaalsus 6.353 1.092 5.817 0.000 0.414 0.414
## meelekindlus 8.398 1.122 7.482 0.000 0.508 0.508
## avatus ~~
## sotsiaalsus 3.276 0.832 3.937 0.000 0.300 0.300
## meelekindlus 0.817 0.735 1.111 0.267 0.069 0.069
## sotsiaalsus ~~
## meelekindlus 6.047 1.080 5.599 0.000 0.386 0.386
##
## Variances:
## Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
## N1 12.404 1.132 10.960 0.000 12.404 0.318
## N2 18.399 1.467 12.545 0.000 18.399 0.538
## N3 11.172 1.130 9.887 0.000 11.172 0.249
## N4 11.408 1.006 11.344 0.000 11.408 0.353
## N5 20.424 1.589 12.857 0.000 20.424 0.624
## N6 10.518 0.904 11.635 0.000 10.518 0.385
## E1 7.619 0.751 10.143 0.000 7.619 0.320
## E2 16.341 1.422 11.493 0.000 16.341 0.435
## E3 22.539 1.842 12.234 0.000 22.539 0.543
## E4 18.356 1.656 11.087 0.000 18.356 0.393
## E5 15.660 1.241 12.623 0.000 15.660 0.625
## E6 16.699 1.411 11.835 0.000 16.699 0.479
## O1 24.862 2.007 12.386 0.000 24.862 0.751
## O2 20.050 1.946 10.301 0.000 20.050 0.529
## O3 8.857 0.944 9.386 0.000 8.857 0.467
## O4 22.769 1.778 12.806 0.000 22.769 0.822
## O5 25.396 2.336 10.872 0.000 25.396 0.575
## O6 13.952 1.065 13.102 0.000 13.952 0.881
## A1 16.084 1.523 10.559 0.000 16.084 0.526
## A2 24.756 2.003 12.358 0.000 24.756 0.723
## A3 6.289 0.849 7.407 0.000 6.289 0.343
## A4 14.826 1.224 12.113 0.000 14.826 0.686
## A5 31.888 2.366 13.476 0.000 31.888 0.967
## A6 10.912 0.884 12.346 0.000 10.912 0.721
## C1 7.221 0.668 10.814 0.000 7.221 0.300
## C2 13.348 1.081 12.350 0.000 13.348 0.486
## C3 11.481 0.943 12.169 0.000 11.481 0.452
## C4 11.659 1.044 11.164 0.000 11.659 0.328
## C5 7.522 0.798 9.424 0.000 7.522 0.221
## C6 20.063 1.572 12.766 0.000 20.063 0.587
## neurootilisus 26.610 2.804 9.490 0.000 1.000 1.000
## ekstravertsus 16.203 1.735 9.338 0.000 1.000 1.000
## avatus 8.247 1.808 4.560 0.000 1.000 1.000
## sotsiaalsus 14.508 2.142 6.773 0.000 1.000 1.000
## meelekindlus 16.885 1.741 9.700 0.000 1.000 1.000
2. Teine ülesanne on laenatud Rex Kline’i raamatust Principles and Practice of Structural Equation Modeling ja kasutatavad andmed parinevad algselt uurimusest, mille autoriteks on Roth jt (1989). Maatriks nimega illness.cov sisaldab 5 muutuja vahelisi kovariatsioonikordajaid. Muutujad vastavad viie küsimustiku skoorile ja nende sisu on järgmine:
mudel5 <- "
# regressioonseosed tunnuste vahel
fitness ~ exercise
illness ~ fitness + stress
stress ~ hardiness + illness
# korrelatsioonid
hardiness ~~ exercise
"
fit5 <- sem(mudel5, sample.cov=illness.cov, sample.nobs=373, fixed.x=FALSE)
summary(fit5, fit.measures=TRUE, standardized=TRUE)
## lavaan (0.5-20) converged normally after 50 iterations
##
## Number of observations 373
##
## Estimator ML
## Minimum Function Test Statistic 10.451
## Degrees of freedom 4
## P-value (Chi-square) 0.033
##
## Model test baseline model:
##
## Minimum Function Test Statistic 165.944
## Degrees of freedom 10
## P-value 0.000
##
## User model versus baseline model:
##
## Comparative Fit Index (CFI) 0.959
## Tucker-Lewis Index (TLI) 0.897
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -9943.945
## Loglikelihood unrestricted model (H1) -9938.720
##
## Number of free parameters 11
## Akaike (AIC) 19909.891
## Bayesian (BIC) 19953.028
## Sample-size adjusted Bayesian (BIC) 19918.129
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.066
## 90 Percent Confidence Interval 0.017 0.116
## P-value RMSEA <= 0.05 0.243
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.048
##
## Parameter Estimates:
##
## Information Expected
## Standard Errors Standard
##
## Regressions:
## Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
## fitness ~
## exercise 0.216 0.026 8.180 0.000 0.216 0.390
## illness ~
## fitness -0.450 0.081 -5.573 0.000 -0.450 -0.266
## stress 0.178 0.129 1.386 0.166 0.178 0.191
## stress ~
## hardiness -0.368 0.086 -4.261 0.000 -0.368 -0.209
## illness 0.143 0.154 0.931 0.352 0.143 0.133
##
## Covariances:
## Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
## exercise ~~
## hardiness -75.607 130.551 -0.579 0.562 -75.607 -0.030
##
## Variances:
## Estimate Std.Err Z-value P(>|z|) Std.lv Std.all
## fitness 1145.182 83.856 13.657 0.000 1145.182 0.848
## illness 3255.825 268.196 12.140 0.000 3255.825 0.845
## stress 3955.658 365.110 10.834 0.000 3955.658 0.890
## exercise 4410.394 322.952 13.657 0.000 4410.394 1.000
## hardiness 1440.129 105.454 13.657 0.000 1440.129 1.000
Näiteid:
http://sachaepskamp.com/semPlot/examples?page_id=489
library(semPlot)
## Warning: package 'semPlot' was built under R version 3.2.5
semPaths(fit5, "model", "est", intercepts = FALSE, curvePivot = FALSE, layout = "tree2")