Import Snijders data and replicate Mplus model results reported at UCLA
library(lme4)
library(QuantPsyc)
colnames = c("schoolnr", "pupilnr", "iq_verb", "iq_perf", "sex", "minority",
"repeatgr", "aritpret", "classnr", "aritpost", "langpret", "langpost", "ses",
"denomina", "schoolse", "satiprin", "natitest", "meetings", "currmeet",
"mixedgra", "percmino", "aritdiff", "homework", "classsiz", "groupsiz")
m1 = read.csv(file = "~/Dropbox/perdevarbeit/Jaap/snijders beispieldaten/mlbook1.dat",
col.names = colnames, header = F, na.strings = "-9999")
source("~/R/self-insight/diary/2- jaap instruction - snippet calculate slope reliability.R")
(int.only = lmer(langpost ~ (1 | schoolnr), data = m1))
## Linear mixed model fit by REML
## Formula: langpost ~ (1 | schoolnr)
## Data: m1
## AIC BIC logLik deviance REMLdev
## 16259 16276 -8127 16253 16253
## Random effects:
## Groups Name Variance Std.Dev.
## schoolnr (Intercept) 19.6 4.43
## Residual 64.6 8.04
## Number of obs: 2287, groups: schoolnr, 131
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 40.362 0.428 94.3
(verb = lmer(langpost ~ iq_verb + (1 | schoolnr), data = m1))
## Linear mixed model fit by REML
## Formula: langpost ~ iq_verb + (1 | schoolnr)
## Data: m1
## AIC BIC logLik deviance REMLdev
## 15264 15287 -7628 15252 15256
## Random effects:
## Groups Name Variance Std.Dev.
## schoolnr (Intercept) 9.6 3.1
## Residual 42.2 6.5
## Number of obs: 2287, groups: schoolnr, 131
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 11.1698 0.8795 12.7
## iq_verb 2.4876 0.0701 35.5
##
## Correlation of Fixed Effects:
## (Intr)
## iq_verb -0.937
m1a = read.csv(file = "~/Dropbox/perdevarbeit/Jaap/snijders beispieldaten/mlbook1_a.dat",
col.names = c("schoolnr", "pupilnr", "iq_verb", "iq_perf", "sex", "minority",
"repeatgr", "aritpret", "classnr", "aritpost", "langpret", "langpost",
"ses", "denomina", "schoolses", "satiprin", "natitest", "meetings",
"currmeet", "mixedgra", "percmino", "aritdiff", "homework", "classsiz",
"groupsiz", "iq_verbc", "iqbar"), header = F, na.strings = "-9999")
(within.between = lmer(langpost ~ iq_verbc + iqbar + (1 | schoolnr), data = m1a))
## Linear mixed model fit by REML
## Formula: langpost ~ iq_verbc + iqbar + (1 | schoolnr)
## Data: m1a
## AIC BIC logLik deviance REMLdev
## 15242 15271 -7616 15228 15232
## Random effects:
## Groups Name Variance Std.Dev.
## schoolnr (Intercept) 7.89 2.81
## Residual 42.17 6.49
## Number of obs: 2287, groups: schoolnr, 131
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 40.7410 0.2866 142.2
## iq_verbc 2.4148 0.0717 33.7
## iqbar 1.5892 0.3148 5.0
##
## Correlation of Fixed Effects:
## (Intr) iq_vrb
## iq_verbc 0.000
## iqbar 0.077 -0.228