library("gdata")
## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
##
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
##
## Attaching package: 'gdata'
## The following object is masked from 'package:stats':
##
## nobs
## The following object is masked from 'package:utils':
##
## object.size
dq = read.xls("/Users/ferarevalo1/Documents/Econometria 1 /Datosquizz.xlsx")
dq
## N Af R Ycalc.
## 1 0 0 710 707.3
## 2 0 8 800 826.6
## 3 0 16 873 864.8
## 4 0 24 932 888.8
## 5 0 32 975 906.4
## 6 0 40 1003 920.5
## 7 0 48 1014 932.2
## 8 0 56 1012 942.3
## 9 8 0 985 1066.9
## 10 8 8 1078 1246.9
## 11 8 16 1155 1304.5
## 12 8 24 1217 1340.7
## 13 8 32 1264 1367.3
## 14 8 40 1295 1388.6
## 15 8 48 1311 1406.2
## 16 8 56 1312 1421.4
## 17 16 0 1205 1201.7
## 18 16 8 1301 1404.5
## 19 16 16 1382 1469.3
## 20 16 24 1448 1510.1
## 21 16 32 1498 1540.1
## 22 16 40 1534 1564.0
## 23 16 48 1553 1583.9
## 24 16 56 1558 1601.0
## 25 24 0 1370 1291.6
## 26 24 8 1470 1509.6
## 27 24 16 1555 1579.3
## 28 24 24 1625 1623.1
## 29 24 32 1679 1655.4
## 30 24 40 1718 1681.1
## 31 24 48 1742 1702.5
## 32 24 56 1749 1720.8
## 33 32 0 1481 1360.5
## 34 32 8 1584 1590.1
## 35 32 16 1673 1663.5
## 36 32 24 1747 1709.6
## 37 32 32 1804 1743.6
## 38 32 40 1847 1770.7
## 39 32 48 1875 1793.2
## 40 32 56 1886 1812.6
## 41 40 0 1538 1416.9
## 42 40 8 1645 1656.0
## 43 40 16 1737 1732.4
## 44 40 24 1814 1780.5
## 45 40 32 1876 1815.9
## 46 40 40 1922 1844.1
## 47 40 48 1954 1867.6
## 48 40 56 1969 1887.7
## 49 48 0 1539 1464.9
## 50 48 8 1651 1712.1
## 51 48 16 1747 1791.2
## 52 48 24 1828 1840.9
## 53 48 32 1893 1877.5
## 54 48 40 1943 1906.6
## 55 48 48 1978 1930.9
## 56 48 56 1997 1951.7
dq$af1 = log(dq$Af+1)
dq$n1 = log(dq$N+1)
dq$lnr = log(dq$R)
dq
## N Af R Ycalc. af1 n1 lnr
## 1 0 0 710 707.3 0.000000 0.000000 6.565265
## 2 0 8 800 826.6 2.197225 0.000000 6.684612
## 3 0 16 873 864.8 2.833213 0.000000 6.771936
## 4 0 24 932 888.8 3.218876 0.000000 6.837333
## 5 0 32 975 906.4 3.496508 0.000000 6.882437
## 6 0 40 1003 920.5 3.713572 0.000000 6.910751
## 7 0 48 1014 932.2 3.891820 0.000000 6.921658
## 8 0 56 1012 942.3 4.043051 0.000000 6.919684
## 9 8 0 985 1066.9 0.000000 2.197225 6.892642
## 10 8 8 1078 1246.9 2.197225 2.197225 6.982863
## 11 8 16 1155 1304.5 2.833213 2.197225 7.051856
## 12 8 24 1217 1340.7 3.218876 2.197225 7.104144
## 13 8 32 1264 1367.3 3.496508 2.197225 7.142037
## 14 8 40 1295 1388.6 3.713572 2.197225 7.166266
## 15 8 48 1311 1406.2 3.891820 2.197225 7.178545
## 16 8 56 1312 1421.4 4.043051 2.197225 7.179308
## 17 16 0 1205 1201.7 0.000000 2.833213 7.094235
## 18 16 8 1301 1404.5 2.197225 2.833213 7.170888
## 19 16 16 1382 1469.3 2.833213 2.833213 7.231287
## 20 16 24 1448 1510.1 3.218876 2.833213 7.277939
## 21 16 32 1498 1540.1 3.496508 2.833213 7.311886
## 22 16 40 1534 1564.0 3.713572 2.833213 7.335634
## 23 16 48 1553 1583.9 3.891820 2.833213 7.347944
## 24 16 56 1558 1601.0 4.043051 2.833213 7.351158
## 25 24 0 1370 1291.6 0.000000 3.218876 7.222566
## 26 24 8 1470 1509.6 2.197225 3.218876 7.293018
## 27 24 16 1555 1579.3 2.833213 3.218876 7.349231
## 28 24 24 1625 1623.1 3.218876 3.218876 7.393263
## 29 24 32 1679 1655.4 3.496508 3.218876 7.425954
## 30 24 40 1718 1681.1 3.713572 3.218876 7.448916
## 31 24 48 1742 1702.5 3.891820 3.218876 7.462789
## 32 24 56 1749 1720.8 4.043051 3.218876 7.466799
## 33 32 0 1481 1360.5 0.000000 3.496508 7.300473
## 34 32 8 1584 1590.1 2.197225 3.496508 7.367709
## 35 32 16 1673 1663.5 2.833213 3.496508 7.422374
## 36 32 24 1747 1709.6 3.218876 3.496508 7.465655
## 37 32 32 1804 1743.6 3.496508 3.496508 7.497762
## 38 32 40 1847 1770.7 3.713572 3.496508 7.521318
## 39 32 48 1875 1793.2 3.891820 3.496508 7.536364
## 40 32 56 1886 1812.6 4.043051 3.496508 7.542213
## 41 40 0 1538 1416.9 0.000000 3.713572 7.338238
## 42 40 8 1645 1656.0 2.197225 3.713572 7.405496
## 43 40 16 1737 1732.4 2.833213 3.713572 7.459915
## 44 40 24 1814 1780.5 3.218876 3.713572 7.503290
## 45 40 32 1876 1815.9 3.496508 3.713572 7.536897
## 46 40 40 1922 1844.1 3.713572 3.713572 7.561122
## 47 40 48 1954 1867.6 3.891820 3.713572 7.577634
## 48 40 56 1969 1887.7 4.043051 3.713572 7.585281
## 49 48 0 1539 1464.9 0.000000 3.891820 7.338888
## 50 48 8 1651 1712.1 2.197225 3.891820 7.409136
## 51 48 16 1747 1791.2 2.833213 3.891820 7.465655
## 52 48 24 1828 1840.9 3.218876 3.891820 7.510978
## 53 48 32 1893 1877.5 3.496508 3.891820 7.545918
## 54 48 40 1943 1906.6 3.713572 3.891820 7.571988
## 55 48 48 1978 1930.9 3.891820 3.891820 7.589842
## 56 48 56 1997 1951.7 4.043051 3.891820 7.599401
reg = lm(formula = dq$lnr ~ dq$n1+dq$af1)
summary(reg)
##
## Call:
## lm(formula = dq$lnr ~ dq$n1 + dq$af1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.145622 -0.027436 0.006879 0.040037 0.085834
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.561412 0.024543 267.35 <2e-16 ***
## dq$n1 0.187129 0.005812 32.20 <2e-16 ***
## dq$af1 0.070957 0.005841 12.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05423 on 53 degrees of freedom
## Multiple R-squared: 0.9572, Adjusted R-squared: 0.9556
## F-statistic: 592.2 on 2 and 53 DF, p-value: < 2.2e-16
Cuando no se le pone ningun fertilizante el rendimiento de la cosecha sera de 710.
dq2 = read.xls("/Users/ferarevalo1/Documents/Econometria 1 /Datosquizz.xlsx")
dq2$lnycalc = log(dq2$Ycalc.)
dq2$errores = (dq$lnr-dq2$lnycalc)^2
dq2
## N Af R Ycalc. lnycalc errores
## 1 0 0 710 707.3 6.561455 1.451660e-05
## 2 0 8 800 826.6 6.717321 1.069890e-03
## 3 0 16 873 864.8 6.762498 8.906243e-05
## 4 0 24 932 888.8 6.789872 2.252506e-03
## 5 0 32 975 906.4 6.809481 5.322689e-03
## 6 0 40 1003 920.5 6.824917 7.367439e-03
## 7 0 48 1014 932.2 6.837547 7.074627e-03
## 8 0 56 1012 942.3 6.848324 5.092272e-03
## 9 8 0 985 1066.9 6.972513 6.379358e-03
## 10 8 8 1078 1246.9 7.128416 2.118568e-02
## 11 8 16 1155 1304.5 7.173575 1.481563e-02
## 12 8 24 1217 1340.7 7.200947 9.370831e-03
## 13 8 32 1264 1367.3 7.220593 6.171155e-03
## 14 8 40 1295 1388.6 7.236051 4.869995e-03
## 15 8 48 1311 1406.2 7.248646 4.914126e-03
## 16 8 56 1312 1421.4 7.259398 6.414346e-03
## 17 16 0 1205 1201.7 7.091492 7.520462e-06
## 18 16 8 1301 1404.5 7.247437 5.859622e-03
## 19 16 16 1382 1469.3 7.292541 3.752098e-03
## 20 16 24 1448 1510.1 7.319931 1.763377e-03
## 21 16 32 1498 1540.1 7.339603 7.682024e-04
## 22 16 40 1534 1564.0 7.355002 3.751171e-04
## 23 16 48 1553 1583.9 7.367645 3.881537e-04
## 24 16 56 1558 1601.0 7.378384 7.412271e-04
## 25 24 0 1370 1291.6 7.163637 3.472625e-03
## 26 24 8 1470 1509.6 7.319600 7.066194e-04
## 27 24 16 1555 1579.3 7.364737 2.404412e-04
## 28 24 24 1625 1623.1 7.392093 1.368701e-06
## 29 24 32 1679 1655.4 7.411798 2.003840e-04
## 30 24 40 1718 1681.1 7.427204 4.714319e-04
## 31 24 48 1742 1702.5 7.439853 5.260656e-04
## 32 24 56 1749 1720.8 7.450545 2.642217e-04
## 33 32 0 1481 1360.5 7.215608 7.202112e-03
## 34 32 8 1584 1590.1 7.371552 1.477337e-05
## 35 32 16 1673 1663.5 7.416679 3.242853e-05
## 36 32 24 1747 1709.6 7.444015 4.683158e-04
## 37 32 32 1804 1743.6 7.463707 1.159708e-03
## 38 32 40 1847 1770.7 7.479130 1.779806e-03
## 39 32 48 1875 1793.2 7.491757 1.989778e-03
## 40 32 56 1886 1812.6 7.502518 1.575765e-03
## 41 40 0 1538 1416.9 7.256227 6.725884e-03
## 42 40 8 1645 1656.0 7.412160 4.441785e-05
## 43 40 16 1737 1732.4 7.457263 7.031815e-06
## 44 40 24 1814 1780.5 7.484650 3.474544e-04
## 45 40 32 1876 1815.9 7.504336 1.060195e-03
## 46 40 40 1922 1844.1 7.519747 1.711887e-03
## 47 40 48 1954 1867.6 7.532409 2.045244e-03
## 48 40 56 1969 1887.7 7.543114 1.778026e-03
## 49 48 0 1539 1464.9 7.289542 2.435015e-03
## 50 48 8 1651 1712.1 7.445476 1.320561e-03
## 51 48 16 1747 1791.2 7.490641 6.242880e-04
## 52 48 24 1828 1840.9 7.518010 4.945056e-05
## 53 48 32 1893 1877.5 7.537696 6.759746e-05
## 54 48 40 1943 1906.6 7.553077 3.576493e-04
## 55 48 48 1978 1930.9 7.565741 5.808109e-04
## 56 48 56 1997 1951.7 7.576456 5.264853e-04
dq2$lnxu = log(dq2$N+1)
dq2$lnxuc = dq2$lnxu^2
dq2$lnxd = log(dq2$Af+1)
dq2$lnxdc = dq2$lnxd^2
dq2$prod = dq2$lnxu*dq2$lnxd
dq2
## N Af R Ycalc. lnycalc errores lnxu lnxuc lnxd
## 1 0 0 710 707.3 6.561455 1.451660e-05 0.000000 0.000000 0.000000
## 2 0 8 800 826.6 6.717321 1.069890e-03 0.000000 0.000000 2.197225
## 3 0 16 873 864.8 6.762498 8.906243e-05 0.000000 0.000000 2.833213
## 4 0 24 932 888.8 6.789872 2.252506e-03 0.000000 0.000000 3.218876
## 5 0 32 975 906.4 6.809481 5.322689e-03 0.000000 0.000000 3.496508
## 6 0 40 1003 920.5 6.824917 7.367439e-03 0.000000 0.000000 3.713572
## 7 0 48 1014 932.2 6.837547 7.074627e-03 0.000000 0.000000 3.891820
## 8 0 56 1012 942.3 6.848324 5.092272e-03 0.000000 0.000000 4.043051
## 9 8 0 985 1066.9 6.972513 6.379358e-03 2.197225 4.827796 0.000000
## 10 8 8 1078 1246.9 7.128416 2.118568e-02 2.197225 4.827796 2.197225
## 11 8 16 1155 1304.5 7.173575 1.481563e-02 2.197225 4.827796 2.833213
## 12 8 24 1217 1340.7 7.200947 9.370831e-03 2.197225 4.827796 3.218876
## 13 8 32 1264 1367.3 7.220593 6.171155e-03 2.197225 4.827796 3.496508
## 14 8 40 1295 1388.6 7.236051 4.869995e-03 2.197225 4.827796 3.713572
## 15 8 48 1311 1406.2 7.248646 4.914126e-03 2.197225 4.827796 3.891820
## 16 8 56 1312 1421.4 7.259398 6.414346e-03 2.197225 4.827796 4.043051
## 17 16 0 1205 1201.7 7.091492 7.520462e-06 2.833213 8.027098 0.000000
## 18 16 8 1301 1404.5 7.247437 5.859622e-03 2.833213 8.027098 2.197225
## 19 16 16 1382 1469.3 7.292541 3.752098e-03 2.833213 8.027098 2.833213
## 20 16 24 1448 1510.1 7.319931 1.763377e-03 2.833213 8.027098 3.218876
## 21 16 32 1498 1540.1 7.339603 7.682024e-04 2.833213 8.027098 3.496508
## 22 16 40 1534 1564.0 7.355002 3.751171e-04 2.833213 8.027098 3.713572
## 23 16 48 1553 1583.9 7.367645 3.881537e-04 2.833213 8.027098 3.891820
## 24 16 56 1558 1601.0 7.378384 7.412271e-04 2.833213 8.027098 4.043051
## 25 24 0 1370 1291.6 7.163637 3.472625e-03 3.218876 10.361162 0.000000
## 26 24 8 1470 1509.6 7.319600 7.066194e-04 3.218876 10.361162 2.197225
## 27 24 16 1555 1579.3 7.364737 2.404412e-04 3.218876 10.361162 2.833213
## 28 24 24 1625 1623.1 7.392093 1.368701e-06 3.218876 10.361162 3.218876
## 29 24 32 1679 1655.4 7.411798 2.003840e-04 3.218876 10.361162 3.496508
## 30 24 40 1718 1681.1 7.427204 4.714319e-04 3.218876 10.361162 3.713572
## 31 24 48 1742 1702.5 7.439853 5.260656e-04 3.218876 10.361162 3.891820
## 32 24 56 1749 1720.8 7.450545 2.642217e-04 3.218876 10.361162 4.043051
## 33 32 0 1481 1360.5 7.215608 7.202112e-03 3.496508 12.225565 0.000000
## 34 32 8 1584 1590.1 7.371552 1.477337e-05 3.496508 12.225565 2.197225
## 35 32 16 1673 1663.5 7.416679 3.242853e-05 3.496508 12.225565 2.833213
## 36 32 24 1747 1709.6 7.444015 4.683158e-04 3.496508 12.225565 3.218876
## 37 32 32 1804 1743.6 7.463707 1.159708e-03 3.496508 12.225565 3.496508
## 38 32 40 1847 1770.7 7.479130 1.779806e-03 3.496508 12.225565 3.713572
## 39 32 48 1875 1793.2 7.491757 1.989778e-03 3.496508 12.225565 3.891820
## 40 32 56 1886 1812.6 7.502518 1.575765e-03 3.496508 12.225565 4.043051
## 41 40 0 1538 1416.9 7.256227 6.725884e-03 3.713572 13.790617 0.000000
## 42 40 8 1645 1656.0 7.412160 4.441785e-05 3.713572 13.790617 2.197225
## 43 40 16 1737 1732.4 7.457263 7.031815e-06 3.713572 13.790617 2.833213
## 44 40 24 1814 1780.5 7.484650 3.474544e-04 3.713572 13.790617 3.218876
## 45 40 32 1876 1815.9 7.504336 1.060195e-03 3.713572 13.790617 3.496508
## 46 40 40 1922 1844.1 7.519747 1.711887e-03 3.713572 13.790617 3.713572
## 47 40 48 1954 1867.6 7.532409 2.045244e-03 3.713572 13.790617 3.891820
## 48 40 56 1969 1887.7 7.543114 1.778026e-03 3.713572 13.790617 4.043051
## 49 48 0 1539 1464.9 7.289542 2.435015e-03 3.891820 15.146265 0.000000
## 50 48 8 1651 1712.1 7.445476 1.320561e-03 3.891820 15.146265 2.197225
## 51 48 16 1747 1791.2 7.490641 6.242880e-04 3.891820 15.146265 2.833213
## 52 48 24 1828 1840.9 7.518010 4.945056e-05 3.891820 15.146265 3.218876
## 53 48 32 1893 1877.5 7.537696 6.759746e-05 3.891820 15.146265 3.496508
## 54 48 40 1943 1906.6 7.553077 3.576493e-04 3.891820 15.146265 3.713572
## 55 48 48 1978 1930.9 7.565741 5.808109e-04 3.891820 15.146265 3.891820
## 56 48 56 1997 1951.7 7.576456 5.264853e-04 3.891820 15.146265 4.043051
## lnxdc prod
## 1 0.000000 0.000000
## 2 4.827796 0.000000
## 3 8.027098 0.000000
## 4 10.361162 0.000000
## 5 12.225565 0.000000
## 6 13.790617 0.000000
## 7 15.146265 0.000000
## 8 16.346264 0.000000
## 9 0.000000 0.000000
## 10 4.827796 4.827796
## 11 8.027098 6.225206
## 12 10.361162 7.072593
## 13 12.225565 7.682612
## 14 13.790617 8.159552
## 15 15.146265 8.551203
## 16 16.346264 8.883492
## 17 0.000000 0.000000
## 18 4.827796 6.225206
## 19 8.027098 8.027098
## 20 10.361162 9.119762
## 21 12.225565 9.906352
## 22 13.790617 10.521342
## 23 15.146265 11.026357
## 24 16.346264 11.454827
## 25 0.000000 0.000000
## 26 4.827796 7.072593
## 27 8.027098 9.119762
## 28 10.361162 10.361162
## 29 12.225565 11.254824
## 30 13.790617 11.953527
## 31 15.146265 12.527286
## 32 16.346264 13.014080
## 33 0.000000 0.000000
## 34 4.827796 7.682612
## 35 8.027098 9.906352
## 36 10.361162 11.254824
## 37 12.225565 12.225565
## 38 13.790617 12.984533
## 39 15.146265 13.607779
## 40 16.346264 14.136559
## 41 0.000000 0.000000
## 42 4.827796 8.159552
## 43 8.027098 10.521342
## 44 10.361162 11.953527
## 45 12.225565 12.984533
## 46 13.790617 13.790617
## 47 15.146265 14.452555
## 48 16.346264 15.014162
## 49 0.000000 0.000000
## 50 4.827796 8.551203
## 51 8.027098 11.026357
## 52 10.361162 12.527286
## 53 12.225565 13.607779
## 54 13.790617 14.452555
## 55 15.146265 15.146265
## 56 16.346264 15.734829
reg2 = lm(formula = dq2$errores ~ dq2$lnxu+dq2$lnxuc+dq2$lnxd+dq2$lnxdc+dq2$prod, data = dq2)
summary(reg2)
##
## Call:
## lm(formula = dq2$errores ~ dq2$lnxu + dq2$lnxuc + dq2$lnxd +
## dq2$lnxdc + dq2$prod, data = dq2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0056120 -0.0021087 -0.0000877 0.0011313 0.0148403
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0002765 0.0028304 -0.098 0.922576
## dq2$lnxu 0.0054272 0.0015424 3.519 0.000934 ***
## dq2$lnxuc -0.0011810 0.0003264 -3.619 0.000690 ***
## dq2$lnxd 0.0019306 0.0015030 1.285 0.204873
## dq2$lnxdc -0.0001457 0.0003050 -0.478 0.635035
## dq2$prod -0.0006504 0.0002851 -2.282 0.026806 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0033 on 50 degrees of freedom
## Multiple R-squared: 0.3594, Adjusted R-squared: 0.2953
## F-statistic: 5.61 on 5 and 50 DF, p-value: 0.0003525
ra = 0.3594*56
ra
## [1] 20.1264
Esto nos lleva a saber que si existe heteroscedasticidad.