BMAC data analysis

Uses data from Britain's Most Admired Companies (http://www.managementtoday.co.uk/go/bmac/).

Dimensions

  1. Quality of management (QMan)
  2. Financial soundness (FS)
  3. Quality of goods or services (QGS)
  4. Ability to Attract, Develop and Retain Top Talent (AAT)
  5. Value as a long-term investment (VLTI)
  6. Capacity to innovate (CI)
  7. Quality of marketing (QMar)
  8. Community and Environmental Responsibility (CER)
  9. Use of corporate assets (UCA)

2009

Descriptive statistics

(means2009 <- ddply(dta2009, .(Industry), function(x) colMeans(x[, -(1:2)])))
##                       Industry  QMan    FS   QGS   AAT  VLTI    CI  QMar   CER   UCA
## 1             Aero and defence 6.750 6.740 7.200 6.700 6.580 6.640 6.450 6.020 6.410
## 2                      Banking 5.410 5.110 5.460 5.110 5.150 5.230 5.170 4.570 4.600
## 3           Building materials 5.920 5.860 6.710 5.560 5.770 5.640 5.310 5.390 5.510
## 4                    Chemicals 6.071 5.929 6.171 5.457 5.371 5.443 5.757 5.100 5.586
## 5                  Engineering 6.740 6.360 6.330 5.890 6.010 5.770 5.890 5.500 5.870
## 6                   Extractive 7.225 6.750 7.562 7.138 7.237 6.588 6.237 5.763 7.525
## 7                         Food 6.100 6.090 5.880 5.650 5.380 5.550 5.680 5.920 5.840
## 8  Food and personal retailers 6.600 6.350 6.610 6.310 6.170 6.160 6.420 5.310 5.730
## 9            General retailers 6.120 5.260 5.890 5.100 5.010 5.120 4.950 4.430 4.750
## 10                      Health 6.487 7.188 7.037 6.662 6.388 5.987 6.925 5.487 6.250
## 11          Heavy construction 5.960 5.900 6.000 5.800 5.670 5.810 5.520 5.630 5.680
## 12           Home construction 5.330 4.540 5.760 4.610 5.020 5.220 5.030 5.390 4.490
## 13                   Insurance 6.200 6.160 5.930 5.870 5.640 5.770 5.410 5.500 5.680
## 14                     Leisure 5.860 6.090 5.810 5.220 5.460 5.270 5.260 5.110 5.330
## 15                       Media 6.130 5.760 6.570 5.910 5.990 5.870 5.750 5.530 5.740
## 16                       Paper 6.213 6.287 6.513 5.700 5.375 5.912 5.562 5.888 5.750
## 17                    Property 5.730 5.980 6.060 5.480 5.500 5.350 5.110 5.480 5.630
## 18                 Restaurants 6.290 6.200 6.220 5.730 5.740 5.490 5.210 5.290 5.620
## 19                    Software 6.400 6.360 6.600 6.050 5.630 6.060 6.050 5.620 6.020
## 20        Specialist retailers 6.263 6.188 6.263 5.862 5.575 6.237 5.987 5.537 6.075
## 21           Specialty finance 5.920 5.740 5.690 5.560 5.560 5.420 5.350 4.860 5.120
## 22            Support services 6.340 6.330 6.240 6.110 6.480 5.770 5.750 5.590 6.370
## 23                    Telecoms 5.714 5.629 5.843 5.000 5.157 4.814 4.557 4.786 5.071
## 24                   Transport 6.060 5.340 5.700 5.360 5.130 5.550 5.710 5.640 5.850
## 25                   Utilities 5.980 6.780 6.080 5.970 6.240 5.800 5.330 5.830 6.200
(sds2009 <- ddply(dta2009, .(Industry), function(x) sapply(x[, -(1:2)], sd)))
##                       Industry   QMan     FS    QGS    AAT   VLTI     CI   QMar    CER    UCA
## 1             Aero and defence 0.9265 1.0865 0.7102 0.8524 0.9920 0.8343 0.6803 0.5633 0.5724
## 2                      Banking 1.2905 1.7546 0.6720 1.4067 1.2826 0.8945 1.1926 1.2320 1.1709
## 3           Building materials 0.7436 1.0102 0.4533 0.7351 0.7484 0.6059 0.6641 0.4932 0.5859
## 4                    Chemicals 1.1600 1.3301 1.3086 1.4351 1.4660 1.6461 0.9914 1.2728 1.2402
## 5                  Engineering 0.9617 0.9312 0.6961 1.0246 0.8491 0.6651 0.6367 0.8151 0.7573
## 6                   Extractive 0.6541 0.7616 0.3503 0.6567 0.6255 0.7338 0.8417 0.7763 0.5751
## 7                         Food 1.1025 1.6908 1.0119 1.3243 1.4665 1.0927 1.2621 1.0304 0.5522
## 8  Food and personal retailers 0.9381 1.5160 1.0418 1.2556 1.3225 1.1227 1.3440 1.5617 1.1373
## 9            General retailers 0.8979 1.4439 0.6385 1.0382 1.2697 1.1063 1.2085 0.5229 0.7367
## 10                      Health 0.8839 0.9433 0.6989 1.1045 0.7643 0.8167 1.2903 0.6707 0.6803
## 11          Heavy construction 0.9454 1.0274 0.8807 0.9978 0.9056 0.8504 0.7885 0.6395 0.7800
## 12           Home construction 1.4291 1.9540 0.7919 1.0257 0.9163 0.5940 1.1786 0.4254 1.2297
## 13                   Insurance 1.2120 1.2747 0.8460 1.0144 1.0679 0.9068 1.2096 0.4028 0.9175
## 14                     Leisure 0.9947 0.7795 0.9723 1.2372 1.1345 0.9464 1.0648 0.5238 0.8042
## 15                       Media 1.2667 1.5508 1.2962 1.0397 1.0989 1.4166 1.2686 0.7119 0.9119
## 16                       Paper 1.1618 0.9687 1.1382 1.1364 0.8664 0.9508 1.1783 0.8967 0.9181
## 17                    Property 0.7861 0.8879 0.8383 0.6197 0.7318 0.9312 0.9550 0.5473 0.8525
## 18                 Restaurants 0.8647 1.4996 1.1998 1.2266 1.2085 1.3932 1.5438 1.1249 1.2479
## 19                    Software 0.6749 0.8592 0.8014 0.7292 0.6767 0.8168 0.6553 0.6647 0.5922
## 20        Specialist retailers 0.7726 0.6468 0.7425 0.5579 1.2338 0.8314 0.7624 0.4438 0.6923
## 21           Specialty finance 0.7510 0.4671 0.5859 0.4904 0.6703 0.6877 0.6754 1.0091 0.6763
## 22            Support services 0.9371 0.9250 0.8475 0.6757 0.7269 0.5982 0.5276 0.2885 0.6945
## 23                    Telecoms 1.0637 1.6347 1.5339 1.9983 1.8438 1.3957 1.2895 1.3108 1.0012
## 24                   Transport 1.1227 1.8234 0.8615 0.9913 1.4407 1.0113 1.1435 1.0490 1.0341
## 25                   Utilities 0.6460 0.8741 0.7239 0.8179 0.7531 0.6037 1.0414 0.7364 0.3972
means2009.m <- melt(means2009)
## Using Industry as id variables
means2009.m <- ddply(means2009.m, .(variable), transform, rescale = rescale(value))
(p <- ggplot(means2009.m, aes(variable, Industry)) + geom_tile(aes(fill = rescale), colour = "white") + 
    scale_fill_gradient(low = "white", high = "steelblue"))

plot of chunk descstats2009

Principal components

2010

cols <- c(6, 8, 10, 12, 14, 16, 18, 20, 22)
tot.col <- 4
ind.col <- 3
comp.col <- 2

inds2010 <- levels(bmac2010[, ind.col])
dta2010 <- bmac2010[, c(ind.col, comp.col, cols)]
(means2010 <- ddply(dta2010, .(Industry), function(x) colMeans(x[, -(1:2)])))
##                       Industry  QMan   QGS  QMar    FS  VLTI   CER   ATT   UCA    CI
## 1             Aero and defence 6.410 6.540 5.670 6.470 5.950 5.700 6.190 6.250 6.268
## 2                      Banking 6.050 6.160 5.800 6.125 5.640 5.748 5.637 5.490 5.440
## 3           Building materials 6.000 6.573 5.820 5.930 6.070 5.813 6.070 5.983 5.660
## 4                    Chemicals 6.170 6.300 5.610 6.310 5.810 5.545 5.922 5.893 5.740
## 5                   Extractive 7.110 6.850 6.000 7.216 7.108 5.984 6.791 7.192 6.340
## 6                         Food 6.610 6.967 5.881 6.634 6.070 6.233 6.160 6.440 6.181
## 7  Food and personal retailers 6.999 7.006 6.390 7.198 6.897 5.845 6.737 6.350 6.357
## 8            General retailers 6.270 6.050 5.120 6.100 5.700 4.950 5.590 5.450 5.410
## 9                       Health 6.140 6.260 5.790 6.040 5.710 5.520 5.890 5.800 5.340
## 10          Heavy construction 5.810 5.920 5.140 5.580 5.200 5.580 5.630 5.450 5.190
## 11           Home construction 5.683 5.880 5.590 5.428 5.383 5.130 5.060 5.360 5.170
## 12                   Insurance 6.143 6.170 5.230 6.350 6.010 4.910 5.900 5.340 5.530
## 13                     Leisure 6.410 6.683 5.885 6.520 6.196 5.770 6.143 5.830 5.520
## 14                       Media 5.940 6.225 5.648 5.840 5.590 5.530 5.754 5.740 5.476
## 15                    Property 6.220 6.620 6.060 6.030 5.900 5.480 6.070 5.420 5.650
## 16                 Restaurants 6.250 6.260 5.810 5.980 5.850 5.890 6.000 5.750 5.680
## 17                    Software 6.510 6.637 5.805 6.530 5.620 5.000 5.900 5.740 6.130
## 18        Specialist retailers 6.050 6.280 5.420 5.780 5.610 5.300 5.640 5.560 5.510
## 19           Specialty finance 6.220 6.700 5.640 6.740 5.860 4.250 6.690 5.940 5.890
## 20            Support services 7.083 6.928 6.588 6.830 6.498 5.980 6.513 6.603 6.280
## 21                    Telecoms 6.040 5.710 5.090 5.517 5.140 5.080 5.220 5.380 5.073
## 22                   Transport 6.263 5.860 5.740 6.040 5.620 5.730 5.500 5.800 5.540
## 23                   Utilities 6.200 6.040 5.920 6.830 6.480 6.140 5.920 5.900 5.660
(sds2010 <- ddply(dta2010, .(Industry), function(x) sapply(x[, -(1:2)], sd)))
##                       Industry   QMan    QGS   QMar     FS   VLTI    CER    ATT    UCA     CI
## 1             Aero and defence 0.8185 0.7531 0.7602 1.1700 0.9652 0.5457 0.6983 0.6096 0.9047
## 2                      Banking 1.1740 0.6275 1.1879 1.5447 1.3235 1.0617 1.6085 1.5329 1.0200
## 3           Building materials 0.9274 0.8390 0.4566 0.9358 1.0144 0.6773 0.8028 0.9047 0.8631
## 4                    Chemicals 0.6881 0.8179 0.7824 0.9207 1.0847 0.9136 0.9016 0.8482 1.0058
## 5                   Extractive 0.7264 0.5017 0.8537 0.9948 0.6206 1.2466 0.6470 0.5687 0.6328
## 6                         Food 1.0857 0.5612 0.7639 1.4705 1.1519 0.5220 1.0648 0.6363 0.7185
## 7  Food and personal retailers 0.8780 0.9709 0.7400 1.0453 1.0300 1.0678 0.8964 0.6468 0.8678
## 8            General retailers 1.1973 0.9812 0.8135 1.4514 1.4236 0.8567 1.0588 1.0876 1.1180
## 9                       Health 0.9264 0.6835 1.1484 1.1711 1.1298 0.6579 1.0888 1.0209 0.9442
## 10          Heavy construction 1.1060 0.9163 1.0069 1.3506 1.0562 0.6529 1.0750 0.8835 1.0311
## 11           Home construction 1.6111 0.6779 1.0333 2.1706 1.8108 0.6056 1.0967 1.4924 0.7349
## 12                   Insurance 1.3975 0.9322 1.1285 0.7678 0.7593 0.6008 0.8882 0.6004 0.8407
## 13                     Leisure 0.9814 0.8526 1.1547 0.9259 0.7934 0.4138 1.0128 0.6567 0.7857
## 14                       Media 1.3352 1.2282 1.2483 1.6588 1.3552 0.6717 1.3798 1.0606 1.4393
## 15                    Property 1.1419 0.6647 0.7367 0.8577 0.5270 0.5594 0.6684 0.4237 0.7397
## 16                 Restaurants 0.5563 0.8695 1.2974 1.0809 0.7619 0.5685 0.8433 0.8528 1.0581
## 17                    Software 0.6773 0.8665 1.2950 0.6395 0.6663 0.8969 0.8932 0.7351 0.5908
## 18        Specialist retailers 0.8683 0.7021 1.1708 1.0261 1.3658 0.6992 0.7604 0.8669 0.9134
## 19           Specialty finance 0.7239 0.9933 1.3640 0.7777 0.5147 0.3979 0.6557 0.5929 1.3085
## 20            Support services 0.8912 0.7414 0.7942 0.8551 0.8209 0.5432 0.9687 0.7484 0.7131
## 21                    Telecoms 1.0606 1.0311 1.0472 1.2414 1.1286 0.8879 1.1811 0.8430 1.2847
## 22                   Transport 1.3595 0.8579 1.1286 1.6507 1.7358 0.7818 1.2092 1.0339 1.2633
## 23                   Utilities 0.6782 0.7137 0.8817 0.6183 0.6233 0.6899 0.5789 0.7257 0.8276
means2010.m <- melt(means2010)
## Using Industry as id variables
means2010.m <- ddply(means2010.m, .(variable), transform, rescale = rescale(value))
(p <- ggplot(means2010.m, aes(variable, Industry)) + geom_tile(aes(fill = rescale), colour = "white") + 
    scale_fill_gradient(low = "white", high = "steelblue"))

plot of chunk descstats2010

2011

cols <- c(3, 5, 7, 9, 11, 13, 15, 17, 19)
tot.col <- 21
ind.col <- 2
comp.col <- 1

inds2011 <- levels(bmac2011[, ind.col])
dta2011 <- bmac2011[, c(ind.col, comp.col, cols)]
(means2011 <- ddply(dta2011, .(Industry), function(x) colMeans(x[, -(1:2)])))
##                       Industry  QMan    FS  QG.S   AAT  VLTI    CI  QMar  C.ER   UCA
## 1             Aero and defence 6.522 6.667 6.933 6.333 6.211 6.456 6.322 5.244 6.333
## 2                      Banking 6.310 6.010 6.020 5.770 5.860 5.850 5.790 5.670 5.890
## 3                    Beverages 6.820 7.450 7.160 6.550 6.660 6.710 6.840 7.010 6.990
## 4                    Chemicals 6.911 7.400 7.122 6.589 6.589 6.367 5.767 6.033 6.144
## 5                  Engineering 6.820 6.540 6.960 6.250 6.890 6.290 5.350 5.280 5.890
## 6                   Extractive 6.760 6.630 6.390 6.030 6.500 5.940 5.380 5.150 6.120
## 7                         Food 6.622 6.411 6.844 6.200 6.178 6.156 5.456 5.733 6.456
## 8  Food and personal retailers 6.940 6.860 6.680 6.480 6.220 6.430 6.520 6.310 6.700
## 9                       Gaming 5.820 6.170 6.110 5.370 5.840 5.870 5.780 4.660 5.500
## 10          Heavy construction 6.290 6.130 6.360 5.790 6.170 5.370 5.660 6.070 6.050
## 11           Home construction 6.971 6.871 6.700 6.586 7.100 6.400 6.500 6.186 6.529
## 12              Home retailers 6.900 5.760 6.170 5.860 5.360 5.700 5.630 5.360 5.910
## 13                   Insurance 6.310 6.540 5.770 6.300 6.130 5.430 5.320 5.530 6.010
## 14                     Leisure 5.857 5.771 5.971 5.600 5.471 5.186 5.629 5.271 5.829
## 15                       Media 6.100 6.090 6.630 5.920 5.900 5.750 5.780 5.160 5.690
## 16                    Property 6.980 7.280 7.070 6.800 7.030 6.470 6.380 6.530 7.010
## 17                 Restaurants 6.260 5.860 6.210 5.910 5.910 5.820 5.700 5.330 5.750
## 18                    Software 6.820 7.100 6.760 6.750 6.820 6.600 6.470 6.110 6.730
## 19        Specialist retailers 6.580 6.610 6.540 6.220 6.140 5.920 5.770 5.270 6.090
## 20           Specialty finance 6.470 6.690 6.550 6.470 6.170 6.140 5.990 5.480 6.060
## 21            Support services 7.240 7.410 7.140 6.870 6.940 6.770 6.630 6.270 6.960
## 22                    Telecoms 6.311 6.022 6.378 5.833 5.700 5.822 6.022 5.589 6.300
## 23                   Transport 6.650 6.310 6.200 5.910 5.840 5.940 6.020 5.970 6.330
## 24     Transportation services 6.287 5.750 6.037 5.950 5.900 5.513 5.825 5.612 5.525
## 25                   Utilities 6.100 6.290 6.290 6.050 5.960 5.730 5.520 6.330 5.890
(sds2011 <- ddply(dta2011, .(Industry), function(x) sapply(x[, -(1:2)], sd)))
##                       Industry   QMan     FS   QG.S    AAT   VLTI     CI   QMar   C.ER    UCA
## 1             Aero and defence 0.9431 1.0235 0.8944 0.7124 0.8838 0.7055 0.7014 0.6247 0.6856
## 2                      Banking 0.5840 0.7295 0.4341 0.7499 0.4402 0.5759 0.5301 0.6308 0.8452
## 3                    Beverages 0.5789 0.9144 0.6398 0.9606 0.6501 0.6822 0.7749 0.6691 0.6607
## 4                    Chemicals 0.5036 0.9695 1.0895 0.8298 0.7817 0.9434 1.3793 1.3077 0.8676
## 5                  Engineering 1.5469 1.3310 1.1530 1.2492 0.9949 0.9871 1.0617 0.9897 1.4098
## 6                   Extractive 1.1296 1.3557 1.0713 1.1344 1.2927 1.0741 1.1526 0.9583 1.1173
## 7                         Food 1.2607 2.3095 0.5364 1.1292 1.8840 1.1545 1.3049 1.0075 0.8618
## 8  Food and personal retailers 0.8181 1.3986 0.9090 0.9402 0.9426 0.8680 0.7983 0.9374 0.7288
## 9                       Gaming 1.4801 2.2301 1.4043 1.5011 1.5342 1.4712 1.4219 0.5060 0.9764
## 10          Heavy construction 0.8020 0.9730 0.5147 0.7894 0.8512 0.7304 0.6720 0.4111 0.3375
## 11           Home construction 1.2842 1.6225 0.7810 0.7946 0.6272 0.7280 1.0770 0.3716 1.0797
## 12              Home retailers 0.8731 1.4516 1.1295 1.4300 1.6181 1.3976 1.3039 1.2624 0.6280
## 13                   Insurance 0.9689 0.6995 0.6684 0.8246 0.8367 0.6308 0.6680 0.5658 0.9666
## 14                     Leisure 2.0181 2.0014 1.1265 1.4844 1.5381 0.9155 0.9534 0.9340 1.4840
## 15                       Media 1.0306 1.1100 0.9166 0.9496 1.0077 1.0384 1.0518 0.7306 0.7355
## 16                    Property 1.1203 0.8677 0.6913 0.8692 0.8420 0.9274 0.9601 0.7804 0.7608
## 17                 Restaurants 0.9958 1.4953 1.1484 0.9608 1.3153 1.1400 1.4636 0.8551 1.1683
## 18                    Software 0.6070 0.9177 0.5522 0.7059 0.7927 0.6429 0.5250 0.5626 0.6617
## 19        Specialist retailers 0.5865 0.8239 0.7820 0.6286 0.6786 0.6374 0.8870 0.4990 0.5065
## 20           Specialty finance 0.8166 0.8925 0.7075 0.8028 0.7181 0.8343 0.7400 0.2616 0.5758
## 21            Support services 0.8449 0.8711 1.1078 0.7514 0.9857 0.8667 0.6413 0.2359 0.8959
## 22                    Telecoms 1.6465 1.5048 1.0462 1.3793 1.4491 1.2367 1.4140 1.1363 1.3115
## 23                   Transport 0.9312 1.0525 0.7888 0.6790 1.0002 0.7351 1.0507 0.8327 0.6038
## 24     Transportation services 1.1205 1.5278 1.0405 1.1402 1.2398 1.2438 1.1449 0.7473 1.1145
## 25                   Utilities 0.9080 0.8762 0.5384 0.6900 0.8276 0.6881 1.0983 0.6038 0.4332
means2011.m <- melt(means2011)
## Using Industry as id variables
means2011.m <- ddply(means2011.m, .(variable), transform, rescale = rescale(value))
(p <- ggplot(means2011.m, aes(variable, Industry)) + geom_tile(aes(fill = rescale), colour = "white") + 
    scale_fill_gradient(low = "white", high = "steelblue"))

plot of chunk descstats2011

Industries in each year

Find the industries that are in all three years

print("2009")
## [1] "2009"
inds2009
##  [1] "Aero and defence"            "Banking"                     "Building materials"         
##  [4] "Chemicals"                   "Engineering"                 "Extractive"                 
##  [7] "Food"                        "Food and personal retailers" "General retailers"          
## [10] "Health"                      "Heavy construction"          "Home construction"          
## [13] "Insurance"                   "Leisure"                     "Media"                      
## [16] "Paper"                       "Property"                    "Restaurants"                
## [19] "Software"                    "Specialist retailers"        "Specialty finance"          
## [22] "Support services"            "Telecoms"                    "Transport"                  
## [25] "Utilities"
print("\n2010")
## [1] "\n2010"
inds2010
##  [1] "Aero and defence"            "Banking"                     "Building materials"         
##  [4] "Chemicals"                   "Extractive"                  "Food"                       
##  [7] "Food and personal retailers" "General retailers"           "Health"                     
## [10] "Heavy construction"          "Home construction"           "Insurance"                  
## [13] "Leisure"                     "Media"                       "Property"                   
## [16] "Restaurants"                 "Software"                    "Specialist retailers"       
## [19] "Specialty finance"           "Support services"            "Telecoms"                   
## [22] "Transport"                   "Utilities"
print("\n2011")
## [1] "\n2011"
inds2011
##  [1] "Aero and defence"            "Banking"                     "Beverages"                  
##  [4] "Chemicals"                   "Engineering"                 "Extractive"                 
##  [7] "Food"                        "Food and personal retailers" "Gaming"                     
## [10] "Heavy construction"          "Home construction"           "Home retailers"             
## [13] "Insurance"                   "Leisure"                     "Media"                      
## [16] "Property"                    "Restaurants"                 "Software"                   
## [19] "Specialist retailers"        "Specialty finance"           "Support services"           
## [22] "Telecoms"                    "Transport"                   "Transportation services"    
## [25] "Utilities"

indsall <- intersect(inds2011, intersect(inds2009, inds2010))

Aggregate years

(meansag <- ddply(dta, .(Industry), function(x) colMeans(x[, -c(1:2, 12, 13)])))
##                       Industry  QMan    FS   QGS   ATT  VLTI    CI  QMar   CER   UCA
## 1             Aero and defence 6.562 6.624 6.890 6.410 6.248 6.454 6.141 5.669 6.331
## 2                      Banking 5.923 5.748 5.880 5.506 5.550 5.507 5.587 5.329 5.327
## 3                    Chemicals 6.400 6.585 6.550 6.028 5.962 5.877 5.704 5.594 5.897
## 4                   Extractive 7.018 6.874 6.889 6.618 6.928 6.268 5.846 5.623 6.904
## 5                         Food 6.438 6.377 6.554 5.997 5.866 5.956 5.680 5.970 6.238
## 6  Food and personal retailers 6.846 6.803 6.765 6.509 6.429 6.316 6.443 5.822 6.260
## 7           Heavy construction 6.020 5.870 6.093 5.740 5.680 5.457 5.440 5.760 5.727
## 8            Home construction 5.886 5.473 6.048 5.289 5.694 5.507 5.619 5.500 5.341
## 9                    Insurance 6.218 6.350 5.957 6.023 5.927 5.577 5.320 5.313 5.677
## 10                     Leisure 6.063 6.167 6.175 5.660 5.736 5.341 5.587 5.396 5.644
## 11                       Media 6.057 5.897 6.475 5.861 5.827 5.699 5.726 5.407 5.723
## 12                    Property 6.310 6.430 6.583 6.117 6.143 5.823 5.850 5.830 6.020
## 13                 Restaurants 6.267 6.013 6.230 5.880 5.833 5.663 5.573 5.503 5.707
## 14                    Software 6.577 6.663 6.666 6.233 6.023 6.263 6.108 5.577 6.163
## 15        Specialist retailers 6.300 6.193 6.368 5.911 5.789 5.864 5.707 5.357 5.896
## 16           Specialty finance 6.203 6.390 6.313 6.240 5.863 5.817 5.660 4.863 5.707
## 17            Support services 6.888 6.857 6.769 6.498 6.639 6.273 6.323 5.947 6.644
## 18                    Telecoms 6.046 5.722 5.977 5.373 5.338 5.263 5.269 5.177 5.615
## 19                   Transport 6.324 5.897 5.920 5.590 5.530 5.677 5.823 5.780 5.993
## 20                   Utilities 6.093 6.633 6.137 5.980 6.227 5.730 5.590 6.100 5.997
(sdsag <- ddply(dta, .(Industry), function(x) sapply(x[, -c(1:2, 12, 13)], sd)))
##                       Industry   QMan     FS    QGS    ATT   VLTI     CI   QMar    CER    UCA
## 1             Aero and defence 0.8756 1.0642 0.8073 0.7645 0.9542 0.8085 0.7739 0.6415 0.6030
## 2                      Banking 1.0947 1.4402 0.6446 1.2945 1.0979 0.8618 1.0278 1.1152 1.2951
## 3                    Chemicals 0.8485 1.1919 1.1021 1.1028 1.1761 1.2024 1.0348 1.1727 0.9582
## 4                   Extractive 0.8675 1.0783 0.8517 0.9483 0.9461 0.8542 1.0020 1.0570 0.9911
## 5                         Food 1.1340 1.7864 0.8734 1.1654 1.5041 1.0101 1.1030 0.8732 0.7258
## 6  Food and personal retailers 0.8672 1.3361 0.9574 1.0222 1.1232 0.9339 0.9651 1.2475 0.9287
## 7           Heavy construction 0.9477 1.1136 0.7882 0.9313 0.9939 0.8889 0.8353 0.6015 0.7277
## 8            Home construction 1.5614 2.1029 0.8211 1.2556 1.5035 0.8494 1.2086 0.6367 1.4905
## 9                    Insurance 1.1654 0.9295 0.8114 0.9027 0.8917 0.7868 0.9967 0.5882 0.8605
## 10                     Leisure 1.2997 1.2344 1.0166 1.2484 1.1571 0.8590 1.0675 0.6671 0.9705
## 11                       Media 1.1782 1.4153 1.1328 1.1010 1.1359 1.2761 1.1531 0.7032 0.8807
## 12                    Property 1.1223 1.0396 0.8247 0.8910 0.9522 0.9684 1.0190 0.7953 0.9876
## 13                 Restaurants 0.7976 1.3323 1.0446 0.9936 1.0842 1.1713 1.4132 0.8931 1.0661
## 14                    Software 0.6564 0.8491 0.7292 0.8421 0.8962 0.7093 0.9040 0.8357 0.7695
## 15        Specialist retailers 0.7572 0.9018 0.7268 0.6844 1.1140 0.8256 0.9618 0.5574 0.7249
## 16           Specialty finance 0.7726 0.8495 0.8792 0.8097 0.6677 0.9931 0.9797 0.8045 0.7311
## 17            Support services 0.9487 0.9641 0.9628 0.8413 0.8494 0.8212 0.7614 0.4637 0.7959
## 18                    Telecoms 1.2650 1.4045 1.1786 1.4812 1.4207 1.3170 1.3389 1.1032 1.1492
## 19                   Transport 1.1383 1.5473 0.8348 0.9789 1.4074 1.0081 1.0789 0.8755 0.9142
## 20                   Utilities 0.7325 0.8096 0.6505 0.6800 0.7455 0.6899 1.0073 0.6878 0.5404
meansag.m <- melt(meansag)
## Using Industry as id variables
meansag.m <- ddply(meansag.m, .(variable), transform, rescale = rescale(value))
(p <- ggplot(meansag.m, aes(variable, Industry)) + geom_tile(aes(fill = rescale), colour = "white") + 
    scale_fill_gradient(low = "white", high = "steelblue"))

plot of chunk descstats

indag <- dlply(dta, .(Industry))
for (i in 1:length(indag)) {
    x.m <- melt(indag[[i]], "Company.Year", 3:11)
    x.m <- ddply(x.m, .(variable), transform, rescale = rescale(value))
    print(ggplot(x.m, aes(variable, Company.Year)) + geom_tile(aes(fill = value), colour = "white") + 
        scale_fill_gradient(high = "tomato", low = "cyan") + ggtitle(indsall[i]) + geom_text(aes(label = value), 
        size = 3))
}

plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot plot of chunk aggplot

pcindag <- dlply(dta, .(Industry), function(x) {
    pctmp <- prcomp(x[, -c(1, 2, 12, 13)], scale. = TRUE)
    # plot(pctmp$x[,1],pctmp$x[,2])
    biplot(pctmp, xlabs = abbreviate(x$Company), main = x$Industry[1])
    print(summary(pctmp))
    # screeplot(pctmp)
})

plot of chunk pcindag

## Importance of components:
##                          PC1   PC2   PC3    PC4   PC5    PC6    PC7     PC8    PC9
## Standard deviation     2.571 1.012 0.664 0.5920 0.455 0.3861 0.3021 0.27219 0.2285
## Proportion of Variance 0.735 0.114 0.049 0.0389 0.023 0.0166 0.0101 0.00823 0.0058
## Cumulative Proportion  0.735 0.848 0.897 0.9363 0.959 0.9758 0.9860 0.99420 1.0000

plot of chunk pcindag

## Importance of components:
##                         PC1    PC2    PC3    PC4   PC5   PC6     PC7    PC8     PC9
## Standard deviation     2.67 0.9013 0.7137 0.4209 0.368 0.328 0.26809 0.2183 0.17449
## Proportion of Variance 0.79 0.0903 0.0566 0.0197 0.015 0.012 0.00799 0.0053 0.00338
## Cumulative Proportion  0.79 0.8800 0.9366 0.9563 0.971 0.983 0.99132 0.9966 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1    PC2   PC3    PC4    PC5     PC6     PC7    PC8     PC9
## Standard deviation     2.776 0.7454 0.465 0.4501 0.3572 0.29739 0.23802 0.1967 0.09303
## Proportion of Variance 0.856 0.0617 0.024 0.0225 0.0142 0.00983 0.00629 0.0043 0.00096
## Cumulative Proportion  0.856 0.9179 0.942 0.9644 0.9786 0.98845 0.99474 0.9990 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1    PC2    PC3    PC4    PC5    PC6    PC7    PC8     PC9
## Standard deviation     2.622 0.7966 0.6491 0.5714 0.4956 0.4361 0.3596 0.3009 0.29339
## Proportion of Variance 0.764 0.0705 0.0468 0.0363 0.0273 0.0211 0.0144 0.0101 0.00956
## Cumulative Proportion  0.764 0.8345 0.8813 0.9176 0.9449 0.9660 0.9804 0.9904 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1   PC2    PC3    PC4    PC5    PC6     PC7     PC8     PC9
## Standard deviation     2.538 0.954 0.8524 0.5513 0.4968 0.4409 0.27530 0.25394 0.19119
## Proportion of Variance 0.716 0.101 0.0807 0.0338 0.0274 0.0216 0.00842 0.00716 0.00406
## Cumulative Proportion  0.716 0.817 0.8975 0.9313 0.9587 0.9804 0.98877 0.99594 1.00000

plot of chunk pcindag

## Importance of components:
##                         PC1   PC2    PC3    PC4    PC5    PC6    PC7    PC8     PC9
## Standard deviation     2.47 1.073 0.8314 0.5837 0.4752 0.4463 0.3768 0.3011 0.19146
## Proportion of Variance 0.68 0.128 0.0768 0.0379 0.0251 0.0221 0.0158 0.0101 0.00407
## Cumulative Proportion  0.68 0.808 0.8850 0.9228 0.9479 0.9701 0.9859 0.9959 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1    PC2    PC3    PC4    PC5    PC6     PC7     PC8     PC9
## Standard deviation     2.691 0.8751 0.6390 0.4505 0.3694 0.3224 0.26369 0.21339 0.16512
## Proportion of Variance 0.804 0.0851 0.0454 0.0226 0.0152 0.0115 0.00773 0.00506 0.00303
## Cumulative Proportion  0.804 0.8895 0.9349 0.9575 0.9726 0.9842 0.99191 0.99697 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1  PC2   PC3    PC4    PC5     PC6     PC7     PC8     PC9
## Standard deviation     2.650 1.08 0.511 0.4492 0.3633 0.29732 0.24659 0.20237 0.14485
## Proportion of Variance 0.781 0.13 0.029 0.0224 0.0147 0.00982 0.00676 0.00455 0.00233
## Cumulative Proportion  0.781 0.91 0.939 0.9619 0.9765 0.98636 0.99312 0.99767 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1   PC2    PC3    PC4    PC5   PC6    PC7    PC8    PC9
## Standard deviation     2.406 1.058 0.9118 0.5860 0.5410 0.511 0.3969 0.3368 0.3012
## Proportion of Variance 0.643 0.124 0.0924 0.0382 0.0325 0.029 0.0175 0.0126 0.0101
## Cumulative Proportion  0.643 0.768 0.8601 0.8983 0.9308 0.960 0.9773 0.9899 1.0000

plot of chunk pcindag

## Importance of components:
##                          PC1    PC2    PC3    PC4    PC5    PC6     PC7     PC8    PC9
## Standard deviation     2.761 0.6274 0.5893 0.4598 0.3703 0.3394 0.27282 0.25384 0.1849
## Proportion of Variance 0.847 0.0437 0.0386 0.0235 0.0152 0.0128 0.00827 0.00716 0.0038
## Cumulative Proportion  0.847 0.8907 0.9293 0.9527 0.9680 0.9808 0.98904 0.99620 1.0000

plot of chunk pcindag

## Importance of components:
##                          PC1    PC2    PC3    PC4    PC5    PC6     PC7     PC8     PC9
## Standard deviation     2.764 0.6564 0.5526 0.4508 0.3772 0.3395 0.28563 0.23221 0.16077
## Proportion of Variance 0.849 0.0479 0.0339 0.0226 0.0158 0.0128 0.00906 0.00599 0.00287
## Cumulative Proportion  0.849 0.8970 0.9309 0.9535 0.9693 0.9821 0.99114 0.99713 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1   PC2    PC3    PC4    PC5    PC6     PC7    PC8     PC9
## Standard deviation     2.583 0.984 0.7962 0.4906 0.4328 0.3440 0.29386 0.2419 0.19083
## Proportion of Variance 0.741 0.108 0.0704 0.0267 0.0208 0.0132 0.00959 0.0065 0.00405
## Cumulative Proportion  0.741 0.849 0.9192 0.9459 0.9667 0.9799 0.98945 0.9960 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1    PC2    PC3   PC4    PC5     PC6     PC7     PC8     PC9
## Standard deviation     2.801 0.6199 0.4792 0.403 0.3563 0.29444 0.26655 0.24254 0.19148
## Proportion of Variance 0.872 0.0427 0.0255 0.018 0.0141 0.00963 0.00789 0.00654 0.00407
## Cumulative Proportion  0.872 0.9142 0.9397 0.958 0.9719 0.98150 0.98939 0.99593 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1   PC2    PC3    PC4    PC5    PC6    PC7    PC8     PC9
## Standard deviation     2.359 1.132 0.8234 0.6944 0.6044 0.5049 0.4373 0.3364 0.26271
## Proportion of Variance 0.618 0.142 0.0753 0.0536 0.0406 0.0283 0.0213 0.0126 0.00767
## Cumulative Proportion  0.618 0.761 0.8360 0.8896 0.9302 0.9585 0.9798 0.9923 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1   PC2    PC3    PC4    PC5    PC6    PC7    PC8     PC9
## Standard deviation     2.445 1.019 0.9160 0.6438 0.5305 0.3983 0.3399 0.3195 0.26805
## Proportion of Variance 0.664 0.115 0.0932 0.0461 0.0313 0.0176 0.0128 0.0113 0.00798
## Cumulative Proportion  0.664 0.780 0.8729 0.9189 0.9502 0.9678 0.9807 0.9920 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1   PC2    PC3    PC4    PC5    PC6    PC7    PC8     PC9
## Standard deviation     2.274 1.082 0.8410 0.7857 0.7461 0.5498 0.4716 0.4146 0.28647
## Proportion of Variance 0.574 0.130 0.0786 0.0686 0.0619 0.0336 0.0247 0.0191 0.00912
## Cumulative Proportion  0.574 0.704 0.7830 0.8516 0.9135 0.9471 0.9718 0.9909 1.00000
## Importance of components:
##                          PC1    PC2    PC3    PC4    PC5    PC6    PC7    PC8     PC9
## Standard deviation     2.597 0.9009 0.6269 0.5400 0.5153 0.4260 0.3775 0.3533 0.21027
## Proportion of Variance 0.749 0.0902 0.0437 0.0324 0.0295 0.0202 0.0158 0.0139 0.00491
## Cumulative Proportion  0.749 0.8396 0.8833 0.9157 0.9452 0.9654 0.9812 0.9951 1.00000
## Warning: abbreviate used with non-ASCII chars

plot of chunk pcindag plot of chunk pcindag

## Importance of components:
##                          PC1    PC2    PC3    PC4    PC5    PC6    PC7     PC8     PC9
## Standard deviation     2.665 0.8139 0.6761 0.5136 0.4289 0.4012 0.3048 0.20503 0.18324
## Proportion of Variance 0.789 0.0736 0.0508 0.0293 0.0204 0.0179 0.0103 0.00467 0.00373
## Cumulative Proportion  0.789 0.8628 0.9136 0.9429 0.9634 0.9813 0.9916 0.99627 1.00000

plot of chunk pcindag

## Importance of components:
##                         PC1   PC2   PC3    PC4    PC5    PC6    PC7     PC8     PC9
## Standard deviation     2.44 1.096 0.969 0.5571 0.5298 0.3601 0.3206 0.22878 0.20731
## Proportion of Variance 0.66 0.134 0.104 0.0345 0.0312 0.0144 0.0114 0.00582 0.00478
## Cumulative Proportion  0.66 0.794 0.898 0.9324 0.9636 0.9780 0.9894 0.99522 1.00000

plot of chunk pcindag

## Importance of components:
##                          PC1   PC2   PC3    PC4    PC5    PC6    PC7    PC8     PC9
## Standard deviation     2.235 1.085 1.004 0.8530 0.6585 0.5007 0.4404 0.3662 0.27924
## Proportion of Variance 0.555 0.131 0.112 0.0809 0.0482 0.0278 0.0215 0.0149 0.00866
## Cumulative Proportion  0.555 0.686 0.798 0.8789 0.9270 0.9549 0.9764 0.9913 1.00000
mdsindag <- dlply(dta, .(Industry), function(z) {
    tmpd <- dist(z[, -c(1, 2, 12, 13)])
    mdstmp <- cmdscale(tmpd, eig = TRUE)
    plot(mdstmp$points, main = z$Industry[1], type = "n")
    text(mdstmp$points, abbreviate(z$Company), cex = 0.8)
    print(mdstmp$GOF)
    # print(mdstmp)
})

plot of chunk mds

## [1] 0.8492 0.8492

plot of chunk mds

## [1] 0.8985 0.8985

plot of chunk mds

## [1] 0.9177 0.9177

plot of chunk mds

## [1] 0.8393 0.8393

plot of chunk mds

## [1] 0.8673 0.8673

plot of chunk mds

## [1] 0.8053 0.8053

plot of chunk mds

## [1] 0.9049 0.9049

plot of chunk mds

## [1] 0.9329 0.9329

plot of chunk mds

## [1] 0.7958 0.7958

plot of chunk mds

## [1] 0.9086 0.9086

plot of chunk mds

## [1] 0.9019 0.9019

plot of chunk mds

## [1] 0.8481 0.8481

plot of chunk mds

## [1] 0.9253 0.9253

plot of chunk mds

## [1] 0.7639 0.7639

plot of chunk mds

## [1] 0.8133 0.8133

plot of chunk mds

## [1] 0.7149 0.7149

plot of chunk mds

## [1] 0.8454 0.8454
## Warning: abbreviate used with non-ASCII chars

plot of chunk mds

## [1] 0.8674 0.8674

plot of chunk mds

## [1] 0.8209 0.8209

plot of chunk mds

## [1] 0.7046 0.7046

### Add performance data

plot of chunk roadata

## Linear mixed model fit by REML 
## Formula: ROA ~ Total + (1 | Company) + (1 | Industry) + (1 | Year) 
##    Data: dta.merge 
##   AIC  BIC logLik deviance REMLdev
##  3875 3901  -1932     3861    3863
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Company  (Intercept) 30.97    5.56    
##  Industry (Intercept)  6.60    2.57    
##  Year     (Intercept)  1.21    1.10    
##  Residual             45.09    6.71    
## Number of obs: 545, groups: Company, 237; Industry, 20; Year, 3
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) -12.2470     3.0278   -4.04
## Total         0.3416     0.0533    6.41
## 
## Correlation of Fixed Effects:
##       (Intr)
## Total -0.946

DFBETAS

library(influence.ME)
## Attaching package: 'influence.ME'
## The following object(s) are masked from 'package:arm':
## 
## se.fixef
## The following object(s) are masked from 'package:stats':
## 
## influence
me.inf <- influence(m1, "Company", gf = "all")
rot <- 2/sqrt(230)
dfb <- dfbetas(me.inf)
ggplot(data = data.frame(dfb)) + geom_dotplot(aes(x = Total)) + coord_flip() + geom_vline(xintercept = c(-rot, 
    rot), colour = "red")
## stat_bindot: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

plot of chunk dfbetas

ix <- dfb[, 2] > rot | dfb[, 2] < -rot
dfb[ix, 2]
##       Alternative Networks              Ashmore Group                    Cadbury 
##                    -0.2454                    -0.4616                     0.2555 
##                   IG Group         McInerney Homes UK                 Mothercare 
##                    -0.1448                     0.4385                     0.1888 
##              Mucklow (A&J)              QinetiQ Group                     Redrow 
##                     0.2362                    -0.1522                     0.1330 
##              Sports Direct     St James Place Capital                    Victrex 
##                    -0.2353                     0.2298                     0.1833 
## Cable & Wireless Worldwide               Cairn Energy              Punch Taverns 
##                     0.1980                     0.3045                     0.1413 
##               Telecom plus 
##                    -0.1812

Cook's distance

cd <- cooks.distance(me.inf, parameter = 2, sort = TRUE)
rot.cd <- 4/237
colnames(cd) <- "Cook"
ggplot(data = data.frame(cd)) + geom_dotplot(aes(x = Cook)) + coord_flip() + geom_vline(xintercept = rot.cd, 
    colour = "red")
## stat_bindot: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

plot of chunk cook

ix <- cd[, 1] > rot.cd
cd[ix, ]
##                     Redrow              Punch Taverns                   IG Group 
##                    0.01769                    0.01998                    0.02095 
##              QinetiQ Group               Telecom plus                    Victrex 
##                    0.02317                    0.03283                    0.03361 
##                 Mothercare Cable & Wireless Worldwide     St James Place Capital 
##                    0.03565                    0.03920                    0.05280 
##              Sports Direct              Mucklow (A&J)       Alternative Networks 
##                    0.05536                    0.05579                    0.06024 
##                    Cadbury               Cairn Energy         McInerney Homes UK 
##                    0.06530                    0.09273                    0.19231 
##              Ashmore Group 
##                    0.21309
st <- sigtest(me.inf, test = 1.96)
any(st$Total[, 3])
## [1] FALSE
obs.inf <- influence(m1.ss, obs = TRUE)
obs.cd <- cooks.distance(obs.inf)
ix <- (obs.cd > 4/528)
m1.ss@frame[ix, c("Company", "Year")]
##                             Company Year
## 3                                3i 2010
## 4                                3i 2011
## 5         Aberdeen Asset Management 2009
## 6         Aberdeen Asset Management 2010
## 7         Aberdeen Asset Management 2011
## 8                           Admiral 2009
## 9                           Admiral 2010
## 10                          Admiral 2011
## 11                            Aegis 2009
## 12                            Aegis 2010
## 13                       Aer Lingus 2009
## 14                       Aer Lingus 2010
## 15                          Aggreko 2009
## 16                          Aggreko 2010
## 17                          Aggreko 2011
## 18           Allied Irish Bank (GB) 2009
## 19           Allied Irish Bank (GB) 2010
## 21                            Amlin 2009
## 22                            Amlin 2010
## 23                            Amlin 2011
## 24                   Anglo American 2009
## 25                   Anglo American 2010
## 32         Associated British Foods 2009
## 33         Associated British Foods 2010
## 34         Associated British Foods 2011
## 35                         Autonomy 2009
## 36                         Autonomy 2010
## 38                      Aveva Group 2009
## 39                      Aveva Group 2010
## 40                      Aveva Group 2011
## 41                      Avis Europe 2009
## 42                      Avis Europe 2010
## 44                            Aviva 2009
## 45                            Aviva 2010
## 46                            Aviva 2011
## 47            Babcock International 2009
## 48            Babcock International 2010
## 49            Babcock International 2011
## 50                      BAE Systems 2009
## 51                      BAE Systems 2010
## 52                      BAE Systems 2011
## 53                   Balfour Beatty 2009
## 54                   Balfour Beatty 2010
## 55                   Balfour Beatty 2011
## 56                  Banco Santander 2009
## 57                  Banco Santander 2010
## 58                  Banco Santander 2011
## 60                  Bank of Ireland 2010
## 61                         Barclays 2009
## 62                         Barclays 2010
## 63                         Barclays 2011
## 64             Barratt Developments 2009
## 65             Barratt Developments 2010
## 66             Barratt Developments 2011
## 67                          Bellway 2009
## 68                          Bellway 2010
## 69                          Bellway 2011
## 70                   Berkeley Group 2009
## 71                   Berkeley Group 2010
## 72                   Berkeley Group 2011
## 73                         BG Group 2009
## 74                         BG Group 2010
## 75                         BG Group 2011
## 76                     BHP Billiton 2009
## 77                     BHP Billiton 2010
## 78              Big Yellow Company. 2009
## 79              Big Yellow Company. 2010
## 80                     Boot (Henry) 2009
## 81                     Boot (Henry) 2010
## 82                     Boot (Henry) 2011
## 83                      Bovis Homes 2009
## 84                      Bovis Homes 2010
## 85                      Bovis Homes 2011
## 86                               BP 2009
## 87                               BP 2010
## 88                               BP 2011
## 89                  British Airways 2009
## 90                  British Airways 2010
## 91             British Land Company 2009
## 92             British Land Company 2010
## 93             British Land Company 2011
## 94                          Britvic 2009
## 95                          Britvic 2010
## 96                        Brown (N) 2009
## 97                        Brown (N) 2010
## 98                            BSkyB 2009
## 99                            BSkyB 2010
## 100                           BSkyB 2011
## 101                        BT Group 2009
## 102                        BT Group 2010
## 103                        BT Group 2011
## 104                           Bunzl 2009
## 105                           Bunzl 2010
## 106                           Bunzl 2011
## 107                        Burberry 2009
## 108                        Burberry 2010
## 109 Cable & Wireless Communications 2009
## 110 Cable & Wireless Communications 2010
## 111 Cable & Wireless Communications 2011
## 113                    Capita Group 2009
## 114                    Capita Group 2010
## 115                    Capita Group 2011
## 116                       Carillion 2009
## 117                       Carillion 2011
## 118                        Carnival 2009
## 119                        Carnival 2010
## 120                        Carnival 2011
## 121              Carphone Warehouse 2009
## 122              Carphone Warehouse 2010
## 123              Carphone Warehouse 2011
## 124                        Centrica 2009
## 125                        Centrica 2010
## 126                        Centrica 2011
## 127                  Chemring Group 2009
## 128                  Chemring Group 2010
## 129                  Chemring Group 2011
## 130                 Cineworld Group 2009
## 131                      Clarke (T) 2009
## 132                      Clarke (T) 2010
## 133                  Close Brothers 2009
## 134               Co-operative Bank 2009
## 135               Co-operative Bank 2010
## 136               Co-operative Bank 2011
## 137                          Cobham 2009
## 138                          Cobham 2010
## 139                          Cobham 2011
## 140                    COLT Telecom 2009
## 141                    COLT Telecom 2010
## 143                         Compass 2009
## 144                         Compass 2010
## 145                   Costain Group 2009
## 146                   Costain Group 2010
## 147                   Costain Group 2011
## 148                       Cranswick 2009
## 149                       Cranswick 2010
## 153      Daily Mail & General Trust 2009
## 154      Daily Mail & General Trust 2010
## 155      Daily Mail & General Trust 2011
## 156                     Dairy Crest 2009
## 157                     Dairy Crest 2010
## 158                       Debenhams 2009
## 159                       Debenhams 2010
## 160                  Derwent London 2009
## 161                  Derwent London 2010
## 162                  Derwent London 2011
## 163                          Diageo 2009
## 164                          Diageo 2010
## 165                  Dimension Data 2009
## 166                  Dimension Data 2010
## 167                            Drax 2009
## 168                         easyJet 2009
## 169                         easyJet 2010
## 170                         easyJet 2011
## 171                       Elementis 2009
## 172                       Elementis 2010
## 173                       Elementis 2011
## 174                 Enterprise Inns 2009
## 175                 Enterprise Inns 2010
## 176                 Enterprise Inns 2011
## 177                        Experian 2009
## 178                        Experian 2010
## 179                        Experian 2011
## 180                         Fidessa 2009
## 181                         Fidessa 2010
## 182                         Fidessa 2011
## 183                      FirstGroup 2009
## 184                      FirstGroup 2010
## 185                      FirstGroup 2011
## 186               Friends Provident 2009
## 187                             G4S 2009
## 188                             G4S 2010
## 189                             G4S 2011
## 190                   Galliford Try 2009
## 191                   Galliford Try 2010
## 192                   Galliford Try 2011
## 193                      Game Group 2009
## 194                      Game Group 2010
## 195                      Game Group 2011
## 196                             GKN 2009
## 197                             GKN 2010
## 198                             GKN 2011
## 199            Gleeson (M.J.) Group 2009
## 200            Gleeson (M.J.) Group 2010
## 201                     Go-Ahead Gp 2009
## 202                     Go-Ahead Gp 2010
## 203                     Go-Ahead Gp 2011
## 204          Great Portland Estates 2009
## 205          Great Portland Estates 2010
## 206          Great Portland Estates 2011
## 207                       Greencore 2009
## 208                       Greencore 2011
## 209                     Greene King 2009
## 210                     Greene King 2010
## 211                     Greene King 2011
## 212                        Halfords 2009
## 213                        Halfords 2010
## 214                        Halfords 2011
## 215                       Hammerson 2009
## 216                       Hammerson 2010
## 217                       Hammerson 2011
## 218                             HMV 2009
## 219                             HMV 2010
## 220                            HSBC 2009
## 221                            HSBC 2010
## 222                            HSBC 2011
## 223                            ICAP 2009
## 224                            ICAP 2010
## 225                            ICAP 2011
## 226                        IG Group 2009
## 227                        IG Group 2010
## 228                        IG Group 2011
## 229                        Inchcape 2009
## 230                        Inchcape 2010
## 231                        Inchcape 2011
## 232                         Informa 2009
## 233                         Informa 2010
## 238                        Inmarsat 2009
## 239                        Inmarsat 2010
## 240                        Inmarsat 2011
## 241         InterContinental Hotels 2009
## 242         InterContinental Hotels 2010
## 243         InterContinental Hotels 2011
## 244             International Power 2009
## 245             International Power 2010
## 246             International Power 2011
## 247                        Intertek 2009
## 248                        Intertek 2010
## 249                        Intertek 2011
## 250                        Invensys 2009
## 251                        Invensys 2010
## 252                        Invensys 2011
## 253                        Investec 2009
## 254                        Investec 2010
## 255                        Investec 2011
## 256                             ITV 2009
## 257                             ITV 2010
## 258                             ITV 2011
## 259                 Johnson Matthey 2009
## 260                 Johnson Matthey 2010
## 261                 Johnson Matthey 2011
## 262                      KCOM Group 2009
## 263                      KCOM Group 2010
## 264                    Keller Group 2009
## 265                    Keller Group 2010
## 266                    Keller Group 2011
## 267                      Kier Group 2009
## 268                      Kier Group 2010
## 269                      Kier Group 2011
## 270                KSK Power Ventur 2009
## 271                       Ladbrokes 2009
## 272                       Ladbrokes 2010
## 273                 Land Securities 2009
## 274                 Land Securities 2010
## 275                 Land Securities 2011
## 276           Legal & General Group 2009
## 277           Legal & General Group 2010
## 278           Legal & General Group 2011
## 279           Liberty International 2009
## 280           Liberty International 2010
## 281            Lloyds Banking Group 2009
## 282            Lloyds Banking Group 2010
## 283            Lloyds Banking Group 2011
## 284                          Logica 2009
## 285                          Logica 2010
## 286                          Logica 2011
## 287                   Majestic Wine 2009
## 288                             Man 2009
## 289                             Man 2010
## 290                             Man 2011
## 291                 Marks & Spencer 2009
## 292                 Marks & Spencer 2010
## 293                        Marstons 2009
## 294                        Marstons 2010
## 295                        Marstons 2011
## 298                         Meggitt 2009
## 299                         Meggitt 2010
## 300                         Meggitt 2011
## 301       Micro Focus International 2009
## 302       Micro Focus International 2010
## 303          Millennium & Copthorne 2009
## 304          Millennium & Copthorne 2010
## 305          Millennium & Copthorne 2011
## 306                           Misys 2009
## 307                           Misys 2010
## 308                           Misys 2011
## 309             Mitchells & Butlers 2009
## 310             Mitchells & Butlers 2010
## 311             Mitchells & Butlers 2011
## 312                  Morgan Sindall 2009
## 313                  Morgan Sindall 2010
## 314                  Morgan Sindall 2011
## 315                   Morrison (Wm) 2009
## 316                   Morrison (Wm) 2010
## 317                   Morrison (Wm) 2011
## 318                      Mothercare 2009
## 319                      Mothercare 2010
## 321                   Mucklow (A&J) 2009
## 358                   QinetiQ Group 2009
## 360                   QinetiQ Group 2011
## 362                          Redrow 2009
## 375                     Rolls-Royce 2009
## 416                   Sports Direct 2009
## 433                   Taylor Wimpey 2009
## 454               Ultra Electronics 2009
## 500                            AMEC 2010
## 501                            AMEC 2011
## 502                            ASDA 2010
## 503                            ASDA 2011
## 504                            BASF 2010
## 505                            BASF 2011
## 507      Cable & Wireless Worldwide 2010
## 508      Cable & Wireless Worldwide 2011
## 509                    Cairn Energy 2010
## 510                    Cairn Energy 2011
## 511              Co-operative Group 2010
## 513                         E.on UK 2010
## 514                         E.on UK 2011
## 515                      EDF Energy 2010
## 516                      EDF Energy 2011
## 517                      Gala Coral 2010
## 518                         Glanbia 2010
## 519                         Glanbia 2011
## 522                           Ineos 2010
## 523                           Ineos 2011
## 524          John Lewis Partnership 2010
## 525                     Kerry Group 2010
## 526                     Kerry Group 2011
## 527                          npower 2010
## 528                          npower 2011
## 529                   Punch Taverns 2010
## 530                   Punch Taverns 2011
## 533                             ROK 2010
## 534                         Savills 2010
## 535                        Syngenta 2010
## 536                        Syngenta 2011
## 537                       Talk Talk 2010
## 538                       Talk Talk 2011
## 552                    Essar Energy 2011
## 553    Euromoney Institutional Inv. 2011
## 554                        Filtrona 2011
## 559                         Iceland 2011

Question: how best to determine number of dimensions of reputation in an industry?

Reputation and industry competitiveness

Use the mean return on assests in the industry as a measure of how competitive it is. The higher the ROA, the less competitive. The hypothesis is that reputation more important in the most competitive industries (ie, those with lowest mean ROA). That implies a negative interation between the effect of reputation score (Total) and meanROA.

meanROA <- ddply(dta.merge, .(Industry), summarize, meanROA = mean(ROA, na.rm = TRUE))
dta.merge2 <- merge(dta.merge, meanROA, by = "Industry", all = TRUE)
m2 <- lmer(ROA ~ Total * meanROA + (1 + Total | Industry) + (1 | Company) + (1 | Year), data = dta.merge2)
m2.ss <- lmer(ROA ~ Total * meanROA + (1 + Total | Industry) + (1 | Company) + (1 | Year), data = dta.merge2, 
    subset = ss)
ef2 <- effect("Total:meanROA", m2)
plot(ef2)

plot of chunk meanROA