require(dplR)
## Loading required package: dplR
#Moving Average
setwd("/Users/shannoncall/Desktop/ESCI597A/Week04/")
noaa <- read.csv("/Users/shannoncall/Desktop/ESCI597A/Week04/noaa.shem.csv")
attach(noaa)
tsp(noaa)
## NULL
noaa.shem.ts<-ts(noaa$Series,start=c(1880,1),frequency=12)
ma50 <- filter(x=noaa.shem.ts, filter=rep(x=1/50,times=50), sides=2)
ma100 <- filter(x=noaa.shem.ts, filter=rep(x=1/100,times=100), sides=2)
ma150 <- filter(x=noaa.shem.ts, filter=rep(x=1/150,times=150), sides=2)
par(tcl=0.5,mar=rep(3,4),mgp=c(1.1,0.1,0),xaxs="i")
plot(noaa.shem.ts,type="l",xlab="Year",ylab="RWI",col="grey")
abline(h=1)
lines(ma50, col = "deeppink", lwd = 2)
lines(ma100, col = "deepskyblue3", lwd = 2)
lines(ma150, col = "darkorange", lwd = 2)
axis(3);axis(4)
series<-noaa$Series
date<-noaa$Date
han32 <- hanning(noaa.shem.ts,n=32)
han64 <- hanning(noaa.shem.ts,n=64)
han128 <- hanning(noaa.shem.ts,n=128)
par(tcl=0.5,mar=rep(3,4),mgp=c(1.1,0.1,0),xaxs="i")
plot(date,series,type="n",xlab="Year",ylab="RWI",col="grey")
abline(h=1)
lines(date,han32, col = "deeppink", lwd = 2)
lines(date,han64, col = "deepskyblue3", lwd = 2)
lines(date,han128, col = "darkorange", lwd = 2)
axis(3);axis(4)
spl32 <- ffcsaps(series,nyrs=32)
spl64 <- ffcsaps(series,nyrs=64)
spl128 <- ffcsaps(series,nyrs=128)
par(tcl=0.5,mar=rep(3,4),mgp=c(1.1,0.1,0),xaxs="i")
plot(date,series,type="l",xlab="Year",ylab="",col="grey")
points(date,series,type="l",col="grey")
abline(h=0)
lines(date,spl32, col = "magenta", lwd = 2)
lines(date,spl64, col = "gold2", lwd = 2)
lines(date,spl128, col = "dodgerblue4", lwd = 1)
axis(4)
n<-length(Series)
years<-1:n
f200<-200/n
f200.lo<-lowess(x=Date,y=Series,f=f200)
residual.200<-Series/f200.lo$y
#Lowess
f32 <- 32/years
f32.lo <- lowess(x = years, y = noaa.shem.ts, f = f32)
par(tcl=0.5,mar=rep(3,4),mgp=c(1.1,0.1,0),xaxs="i")
plot(years,noaa.shem.ts,type="l",xlab="Year",ylab="RWI",col="grey")
abline(h=0)
lines(years,f32.lo$y, col = "red", lwd = 2)
axis(3);axis(4)
library(repmis)
githubURL <- "https://github.com/AndyBunn/TeachingData/raw/master/climate_Time_Series_Extravaganza.Rdata"
source_data(githubURL)
## Downloading data from: https://github.com/AndyBunn/TeachingData/raw/master/climate_Time_Series_Extravaganza.Rdata
## SHA-1 hash of the downloaded data file is:
## 5f5b467b42520fdfbb85cfc8a1fbcc45197e0e56
## [1] "loti.ts" "loti.zoo" "ice.ts" "ice.zoo"
## [5] "sealevel.ts" "sealevel.zoo" "sunspots.ts" "sunspots.zoo"
## [9] "enso.ts" "enso.zoo" "amo.ts" "amo.zoo"
## [13] "pdo.ts" "pdo.zoo" "ohc.ts" "ohc.zoo"
## [17] "co2.ts" "co2.zoo"
oceans3 <- cbind(ENSO=enso.ts,PDO=pdo.ts,AMO=amo.ts)
par(tcl=0.5,mar=rep(2.5,4),mgp=c(1.1,0.1,0),xaxs="i")
plot(oceans3,main="Three Ocean Patterns")
spectrum(na.omit(oceans3,log="no"))
op=par(mfrow=c(3,1)) #separ
spectrum(pdo.ts,log="no",span=5,type="h",xlab="Frequency (cycles/yr)", ylab="Spectral Density",main="Three Ocean Patterns")
spectrum(amo.ts,log="no",span=5,type="h",xlab="Frequency (cycles/yr)", ylab="Spectral Density",main="Three Ocean Patterns")
spectrum(enso.ts,log="no",span=5,type="h",xlab="Frequency (cycles/yr)", ylab="Spectral Density",main="Three Ocean Patterns")
par(op)
milk<-read.csv(file.choose(),header=T) attach(milk)
years<-1962:1975 milk.filter<-na.omit(filter(x=Milk$Month,filter=rep(x=1/2,times=3),sides=1))
library(repmis)
githubURL <- "https://github.com/AndyBunn/TeachingData/raw/master/climate_Time_Series_Extravaganza.Rdata"
source_data(githubURL) # will load all the objects.
## Downloading data from: https://github.com/AndyBunn/TeachingData/raw/master/climate_Time_Series_Extravaganza.Rdata
## SHA-1 hash of the downloaded data file is:
## 5f5b467b42520fdfbb85cfc8a1fbcc45197e0e56
## [1] "loti.ts" "loti.zoo" "ice.ts" "ice.zoo"
## [5] "sealevel.ts" "sealevel.zoo" "sunspots.ts" "sunspots.zoo"
## [9] "enso.ts" "enso.zoo" "amo.ts" "amo.zoo"
## [13] "pdo.ts" "pdo.zoo" "ohc.ts" "ohc.zoo"
## [17] "co2.ts" "co2.zoo"
noaa.shem <- read.csv("noaa.shem.csv")
attach(noaa.shem)
## The following objects are masked from noaa:
##
## Date, Date.Decimal, Series
noaa.shem.ts<-ts(noaa.shem$Series,start=c(1800,1),end=c(2016,2),frequency=12)
ma32 <- filter(x=noaa.shem.ts, filter=rep(x=1/32,times=32), sides=2)
ma64 <- filter(x=noaa.shem.ts, filter=rep(x=1/64,times=64), sides=2)
ma128 <- filter(x=noaa.shem.ts, filter=rep(x=1/128,times=128), sides=2)
plot(noaa.shem.ts,type="l",xlab="Year",ylab="Southern Hemisphere Temp Anomaly",col="grey")
abline(h=0)
lines(ma32,col="deeppink", lwd=2)
lines(ma64,col="deepskyblue3", lwd=2)
lines(ma128,col="darkorange", lwd=2)