Questionário sobre práticas na prevenção do uso de álcool e outras drogas - Análise preliminar

Este relatório objetiva apresentar as análises introdutória do instrumento “Escala de práticas na prevenção do uso de álcool e outras drogas'', que está em fase de desenvolvimento pelo Centro de Referência em Pesquisa, Intervenção e Avaliação em Álcool e Outras Drogas (http://www.ufjf.br/crepeia/).

O instrumento está sendo validado para população de educadores. O objetivo da pesquisa é oferecer uma medida confiável para avaliação das práticas profissionais de educadores de um curso à distância oferecido pela Secretaria Nacional de Políticas sobre Drogas para aproximadamente 10.000 educadores dos estados de Minas Gerais e Rio de Janeiro.

Durante todo o processo de desenvolvimento, foram utilizadas ferramentas de código-aberto, para facilitar o re-uso das técnicas e procedimentos desenvolvidos. Todo conteúdo do instrumento e de suas etapas estará disponível para o público no repositório (http://github.com/crepeia/ead-senad). Atualmente, o projeto está hospedado no repositório (http://github.com/henriquepgomide/ead-senad).

Neste relatório são apresentadas, análises da escala com base em uma amostra de 136 educadores-tutores do curso. As análises foram conduzidas através da linguagem de programação R usando os pacotes car e psych.

Banco de Dados

O banco de dados da pesquisa, pode ser obtido no seguinte endereço: (https://github.com/henriquepgomide/ead-senad/blob/master/praticasprofissionais_df.csv).

Resultados

Os resultados são apresentados por tópicos: caracterização da amostra, avaliação descritiva da escala e análise fatorial exploratória.

Bibliotecas

library(car)  # Function Recode
library(psych)  # Function Describe
## 
## Attaching package: 'psych'
## 
## The following object is masked from 'package:car':
## 
##     logit
praticasPro <- read.csv("praticasprofissionais_df.csv")
## Summing scales to remove NA's
praticasPro$scaleSum <- rowSums(praticasPro[, 24:66])
## Subset completed observations and consented participation
praticasPro <- subset(praticasPro, subset = praticasPro$termo == "Sim" & praticasPro$estado == 
    "Finalizadas" & !is.na(praticasPro$scaleSum))

Sócio-demográficas

Idade

idade <- as.character(praticasPro$idade)
idade[9] <- "35"
idade[44] <- "29"
idade[69] <- "31"
idade[111] <- 42
praticasPro$age <- as.numeric(gsub("anos(.*)", "", idade))
summary(praticasPro$age)  # all
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    25.0    33.0    38.5    39.4    45.2    62.0
by(praticasPro$age, praticasPro$sexo, describe)  #by sex
## praticasPro$sexo: Feminino
##   vars   n  mean  sd median trimmed  mad min max range skew kurtosis   se
## 1    1 118 38.91 8.5     38   38.34 8.15  26  62    36 0.57    -0.31 0.78
## -------------------------------------------------------- 
## praticasPro$sexo: Masculino
##   vars  n  mean   sd median trimmed  mad min max range  skew kurtosis  se
## 1    1 18 42.39 7.62     44   42.75 8.15  25  54    29 -0.52    -0.66 1.8

Sexo

cbind(round(prop.table(table(praticasPro$sexo)), 2))
##           [,1]
## Feminino  0.87
## Masculino 0.13

Escolaridade

cbind(round(prop.table(table(praticasPro$escolaridade)), 2))
##                          [,1]
## Ensino Superior Completo 0.09
## Pós-graduação            0.91

Estado Civil

cbind(round(prop.table(table(praticasPro$estadocivil)), 2))
##                [,1]
## Casado (a)     0.50
## Divorciado (a) 0.13
## Outros         0.08
## Solteiro (a)   0.29

Tempo de serviço

timeWorking <- as.character(praticasPro$tempo.atuacao)
praticasPro$timeWorking <- as.numeric(gsub("anos(.*)", "", timeWorking))
## Warning: NAs introduced by coercion
describe(praticasPro$timeWorking)
##   vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
## 1    1 123 12.59 8.25     10   11.58 7.41   1  42    41    1     0.63 0.74

Religião

cbind(round(prop.table(table(praticasPro$religiao)), 2))
##              [,1]
## Católica     0.53
## Espírita     0.17
## Evangélica   0.15
## Outras       0.06
## Sem religião 0.10

Contato com o tema

cbind(round(prop.table(table(praticasPro$contato.tema)), 2))
##     [,1]
## Não 0.37
## Sim 0.63

Lida com

cbind(round(prop.table(table(praticasPro$lida.com)), 2))
##     [,1]
## Não 0.36
## Sim 0.64

Onde lida com

cbind(round(prop.table(table(praticasPro$onde.lida.com)), 2))
##                   [,1]
## Escola            0.51
## Família           0.27
## Outros            0.20
## Serviços de Saúde 0.03

Apresentação dos itens da escala - Não implementado ainda!

questions <- read.csv("praticasprofissionais_questions.csv", col.names = "Itens", 
    header = FALSE)
## Warning: cannot open file 'praticasprofissionais_questions.csv': No such
## file or directory
## Error: cannot open the connection
print(questions[1:42, 1], type = "html", justify = "left")
## Error: object 'questions' not found

Itens

describe(praticasPro[, 24:66], skew = FALSE)
##       vars   n mean   sd median trimmed  mad min max range   se
## pp001    1 136 1.91 0.91      2    1.79 1.48   1   4     3 0.08
## pp002    2 136 4.48 0.58      5    4.53 0.00   3   5     2 0.05
## pp003    3 136 2.79 0.94      3    2.80 1.48   1   5     4 0.08
## pp004    4 136 4.35 0.56      4    4.36 0.00   3   5     2 0.05
## pp005    5 136 4.46 0.64      5    4.52 0.00   1   5     4 0.06
## pp006    6 136 3.97 0.84      4    4.05 1.48   2   5     3 0.07
## pp007    7 136 4.54 0.54      5    4.57 0.00   3   5     2 0.05
## pp008    8 136 2.88 0.89      3    2.91 1.48   1   5     4 0.08
## pp009    9 136 4.20 0.74      4    4.28 0.00   2   5     3 0.06
## pp010   10 136 1.77 0.73      2    1.69 1.48   1   4     3 0.06
## pp011   11 136 2.44 0.97      2    2.41 1.48   1   5     4 0.08
## pp012   12 136 3.72 0.80      4    3.78 0.00   1   5     4 0.07
## pp013   13 136 3.24 1.03      3    3.22 1.48   1   5     4 0.09
## pp014   14 136 3.43 0.93      4    3.45 1.48   1   5     4 0.08
## pp015   15 136 3.38 1.03      3    3.39 1.48   1   5     4 0.09
## pp016   16 136 4.14 0.70      4    4.21 0.00   2   5     3 0.06
## pp017   17 136 3.15 0.95      3    3.14 1.48   1   5     4 0.08
## pp018   18 136 3.17 1.06      3    3.20 1.48   1   5     4 0.09
## pp019   19 136 3.13 0.98      3    3.18 1.48   1   5     4 0.08
## pp020   20 136 4.35 0.61      4    4.40 0.00   3   5     2 0.05
## pp021   21 136 2.32 0.98      2    2.25 1.48   1   5     4 0.08
## pp022   22 136 3.76 0.80      4    3.81 0.00   2   5     3 0.07
## pp023   23 136 3.81 0.73      4    3.82 0.00   2   5     3 0.06
## pp024   24 136 3.82 0.87      4    3.91 0.00   1   5     4 0.07
## pp025   25 136 3.51 0.89      4    3.54 0.74   1   5     4 0.08
## pp026   26 136 4.30 0.67      4    4.36 0.00   1   5     4 0.06
## pp027   27 136 1.54 0.67      1    1.46 0.00   1   5     4 0.06
## pp028   28 136 1.96 0.88      2    1.86 1.48   1   5     4 0.08
## pp029   29 136 2.62 1.00      2    2.59 1.48   1   5     4 0.09
## pp030   30 136 3.21 0.93      3    3.22 1.48   1   5     4 0.08
## pp031   31 136 2.35 0.82      2    2.34 1.48   1   4     3 0.07
## pp032   32 136 1.73 0.99      1    1.53 0.00   1   5     4 0.09
## pp033   33 136 3.72 0.80      4    3.74 0.00   1   5     4 0.07
## pp034   34 136 3.82 0.72      4    3.83 0.00   1   5     4 0.06
## pp035   35 136 3.61 0.81      4    3.62 1.48   1   5     4 0.07
## pp036   36 136 3.10 0.89      3    3.12 1.48   1   5     4 0.08
## pp037   37 136 3.61 0.89      4    3.65 0.00   1   5     4 0.08
## pp038   38 136 1.96 0.82      2    1.89 1.48   1   4     3 0.07
## pp039   39 136 1.86 0.83      2    1.75 1.48   1   5     4 0.07
## pp040   40 136 2.47 0.91      2    2.45 1.48   1   5     4 0.08
## pp041   41 136 3.16 0.87      3    3.16 1.48   1   5     4 0.07
## pp042   42 136 2.26 0.87      2    2.19 0.00   1   5     4 0.07
## pp043   43 136 4.30 0.75      4    4.42 1.48   1   5     4 0.06

Correlation Matrix

cor.plot(cor(praticasPro[, 24:66], method = "kendal", use = "complete.obs"), 
    numbers = TRUE)

plot of chunk unnamed-chunk-13

Crobach's alfa

alpha(praticasPro[, 24:66])
## Warning: Some items were negatively correlated with total scale and were
## automatically reversed.
## 
## Reliability analysis   
## Call: alpha(x = praticasPro[, 24:66])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd
##        0.9      0.91    0.95      0.19  10 0.015  3.7 0.38
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.9 0.93 
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r  S/N alpha se
## pp001-      0.90      0.91    0.95      0.19  9.9    0.015
## pp002       0.90      0.91    0.95      0.19  9.9    0.015
## pp003       0.91      0.91    0.95      0.20 10.3    0.014
## pp004       0.90      0.91    0.95      0.19  9.8    0.015
## pp005       0.90      0.91    0.95      0.19  9.8    0.015
## pp006       0.90      0.91    0.95      0.19  9.8    0.015
## pp007       0.90      0.91    0.95      0.19  9.8    0.015
## pp008-      0.91      0.91    0.95      0.20 10.3    0.014
## pp009       0.90      0.91    0.95      0.19  9.9    0.015
## pp010-      0.90      0.91    0.95      0.19 10.2    0.015
## pp011       0.90      0.91    0.95      0.19 10.0    0.015
## pp012       0.90      0.91    0.95      0.19  9.7    0.015
## pp013       0.90      0.91    0.95      0.19 10.1    0.015
## pp014       0.90      0.91    0.95      0.19  9.7    0.015
## pp015       0.90      0.91    0.95      0.19  9.9    0.015
## pp016       0.90      0.91    0.95      0.19  9.7    0.015
## pp017       0.90      0.91    0.95      0.19  9.8    0.015
## pp018       0.91      0.91    0.95      0.19 10.2    0.015
## pp019       0.90      0.91    0.95      0.19  9.9    0.015
## pp020       0.90      0.91    0.95      0.19  9.6    0.015
## pp021-      0.90      0.91    0.95      0.19  9.9    0.015
## pp022       0.90      0.91    0.95      0.19  9.7    0.015
## pp023       0.90      0.91    0.95      0.19  9.7    0.015
## pp024       0.90      0.91    0.95      0.19  9.7    0.015
## pp025       0.90      0.91    0.95      0.19  9.9    0.015
## pp026       0.90      0.91    0.95      0.19  9.8    0.015
## pp027-      0.90      0.91    0.95      0.19 10.0    0.015
## pp028-      0.90      0.91    0.95      0.19 10.0    0.015
## pp029       0.90      0.91    0.95      0.19 10.0    0.015
## pp030       0.90      0.91    0.95      0.19  9.7    0.015
## pp031-      0.90      0.91    0.95      0.19  9.9    0.015
## pp032-      0.90      0.91    0.95      0.19 10.0    0.015
## pp033       0.90      0.91    0.95      0.19  9.7    0.015
## pp034       0.90      0.91    0.95      0.19  9.7    0.015
## pp035       0.90      0.91    0.95      0.19  9.7    0.015
## pp036       0.91      0.91    0.95      0.20 10.3    0.014
## pp037       0.90      0.91    0.95      0.19  9.8    0.015
## pp038-      0.90      0.91    0.95      0.19  9.7    0.015
## pp039-      0.90      0.91    0.95      0.19  9.8    0.015
## pp040-      0.90      0.91    0.95      0.19  9.5    0.015
## pp041       0.90      0.91    0.95      0.19 10.1    0.015
## pp042-      0.90      0.91    0.95      0.19  9.6    0.015
## pp043       0.90      0.91    0.95      0.19  9.9    0.015
## 
##  Item statistics 
##          n    r r.cor r.drop mean   sd
## pp001- 136 0.42  0.41   0.37  4.1 0.91
## pp002  136 0.44  0.42   0.37  4.5 0.58
## pp003  136 0.19  0.16   0.14  2.8 0.94
## pp004  136 0.50  0.49   0.44  4.3 0.56
## pp005  136 0.52  0.51   0.45  4.5 0.64
## pp006  136 0.49  0.48   0.43  4.0 0.84
## pp007  136 0.53  0.52   0.46  4.5 0.54
## pp008- 136 0.16  0.13   0.10  3.1 0.89
## pp009  136 0.45  0.43   0.38  4.2 0.74
## pp010- 136 0.26  0.24   0.18  4.2 0.73
## pp011  136 0.38  0.36   0.35  2.4 0.97
## pp012  136 0.57  0.57   0.56  3.7 0.80
## pp013  136 0.31  0.29   0.26  3.2 1.03
## pp014  136 0.58  0.58   0.56  3.4 0.93
## pp015  136 0.45  0.43   0.41  3.4 1.03
## pp016  136 0.56  0.56   0.51  4.1 0.70
## pp017  136 0.48  0.48   0.45  3.1 0.95
## pp018  136 0.26  0.24   0.22  3.2 1.06
## pp019  136 0.45  0.45   0.44  3.1 0.98
## pp020  136 0.62  0.62   0.57  4.3 0.61
## pp021- 136 0.41  0.40   0.36  3.7 0.98
## pp022  136 0.56  0.56   0.54  3.8 0.80
## pp023  136 0.60  0.59   0.57  3.8 0.73
## pp024  136 0.60  0.60   0.57  3.8 0.87
## pp025  136 0.47  0.46   0.43  3.5 0.89
## pp026  136 0.49  0.48   0.43  4.3 0.67
## pp027- 136 0.38  0.37   0.31  4.5 0.67
## pp028- 136 0.34  0.32   0.29  4.0 0.88
## pp029  136 0.33  0.32   0.31  2.6 1.00
## pp030  136 0.60  0.60   0.58  3.2 0.93
## pp031- 136 0.45  0.43   0.41  3.6 0.82
## pp032- 136 0.36  0.34   0.30  4.3 0.99
## pp033  136 0.56  0.56   0.53  3.7 0.80
## pp034  136 0.55  0.54   0.52  3.8 0.72
## pp035  136 0.56  0.55   0.53  3.6 0.81
## pp036  136 0.17  0.14   0.13  3.1 0.89
## pp037  136 0.52  0.51   0.49  3.6 0.89
## pp038- 136 0.56  0.55   0.52  4.0 0.82
## pp039- 136 0.53  0.52   0.49  4.1 0.83
## pp040- 136 0.68  0.68   0.65  3.5 0.91
## pp041  136 0.30  0.27   0.24  3.2 0.87
## pp042- 136 0.62  0.62   0.60  3.7 0.87
## pp043  136 0.41  0.40   0.35  4.3 0.75
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## pp001 0.38 0.42 0.12 0.08 0.00    0
## pp002 0.00 0.00 0.04 0.43 0.52    0
## pp003 0.07 0.32 0.38 0.20 0.03    0
## pp004 0.00 0.00 0.04 0.57 0.39    0
## pp005 0.01 0.00 0.04 0.44 0.51    0
## pp006 0.00 0.07 0.17 0.49 0.27    0
## pp007 0.00 0.00 0.02 0.42 0.56    0
## pp008 0.07 0.24 0.46 0.21 0.02    0
## pp009 0.00 0.03 0.10 0.51 0.36    0
## pp010 0.38 0.49 0.11 0.02 0.00    0
## pp011 0.13 0.49 0.19 0.17 0.01    0
## pp012 0.01 0.09 0.19 0.60 0.11    0
## pp013 0.03 0.26 0.25 0.38 0.09    0
## pp014 0.01 0.18 0.26 0.46 0.09    0
## pp015 0.03 0.17 0.34 0.32 0.15    0
## pp016 0.00 0.03 0.10 0.58 0.29    0
## pp017 0.03 0.24 0.36 0.31 0.07    0
## pp018 0.07 0.19 0.31 0.35 0.08    0
## pp019 0.06 0.20 0.34 0.36 0.04    0
## pp020 0.00 0.00 0.07 0.51 0.42    0
## pp021 0.18 0.49 0.21 0.10 0.03    0
## pp022 0.00 0.08 0.22 0.55 0.15    0
## pp023 0.00 0.04 0.24 0.57 0.14    0
## pp024 0.01 0.07 0.17 0.56 0.18    0
## pp025 0.01 0.14 0.26 0.50 0.09    0
## pp026 0.01 0.01 0.05 0.54 0.39    0
## pp027 0.53 0.43 0.03 0.01 0.01    0
## pp028 0.33 0.45 0.16 0.05 0.01    0
## pp029 0.10 0.40 0.31 0.14 0.04    0
## pp030 0.03 0.19 0.38 0.33 0.07    0
## pp031 0.14 0.45 0.33 0.08 0.00    0
## pp032 0.51 0.35 0.06 0.04 0.04    0
## pp033 0.01 0.04 0.30 0.51 0.14    0
## pp034 0.01 0.03 0.24 0.60 0.13    0
## pp035 0.01 0.07 0.35 0.46 0.12    0
## pp036 0.04 0.20 0.43 0.29 0.04    0
## pp037 0.01 0.11 0.24 0.51 0.12    0
## pp038 0.31 0.47 0.18 0.04 0.00    0
## pp039 0.35 0.49 0.10 0.04 0.01    0
## pp040 0.12 0.45 0.29 0.12 0.01    0
## pp041 0.01 0.22 0.40 0.32 0.04    0
## pp042 0.16 0.52 0.23 0.07 0.01    0
## pp043 0.01 0.02 0.07 0.47 0.43    0

Análise Fatorial

KMO - Adequação da amostra

KMO(praticasPro[, 24:66])
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = praticasPro[, 24:66])
## Overall MSA =  0.81
## MSA for each item = 
## pp001 pp002 pp003 pp004 pp005 pp006 pp007 pp008 pp009 pp010 pp011 pp012 
##  0.75  0.82  0.53  0.79  0.80  0.81  0.92  0.59  0.82  0.64  0.78  0.86 
## pp013 pp014 pp015 pp016 pp017 pp018 pp019 pp020 pp021 pp022 pp023 pp024 
##  0.74  0.80  0.77  0.87  0.73  0.59  0.83  0.90  0.79  0.82  0.86  0.88 
## pp025 pp026 pp027 pp028 pp029 pp030 pp031 pp032 pp033 pp034 pp035 pp036 
##  0.82  0.82  0.75  0.74  0.73  0.90  0.82  0.71  0.87  0.85  0.87  0.50 
## pp037 pp038 pp039 pp040 pp041 pp042 pp043 
##  0.83  0.80  0.83  0.82  0.62  0.78  0.78

Esfericidade

bartlett.test(praticasPro[, 24:66])
## 
##  Bartlett test of homogeneity of variances
## 
## data:  praticasPro[, 24:66]
## Bartlett's K-squared = 300.9, df = 42, p-value < 2.2e-16

Análise paralela

fa.parallel(praticasPro[, 24:66], fm = "minres", fa = "both", ylabel = "Eigenvalues")  # yields 3 components and 4 factors
## Loading required package: parallel
## Loading required package: MASS

plot of chunk unnamed-chunk-17

## Parallel analysis suggests that the number of factors =  4  and the number of components =  4

EFA - Principal component analysis

pca <- fa.poly(praticasPro[, 24:66], nfactors = 4, rotate = "oblimin", fm = "minres")
## Loading required package: mvtnorm
## The items do not have an equal number of response alternatives, global set to FALSE
## Warning: NaNs produced
## Warning: Matrix was not positive definite, smoothing was done
## Loading required package: GPArotation
print.psych(pca, digits = 2, cut = 0.3)
## Factor Analysis using method =  minres
## Call: fa.poly(x = praticasPro[, 24:66], nfactors = 4, rotate = "oblimin", 
##     fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##         MR2   MR1   MR3   MR4    h2   u2 com
## pp001                    0.40 0.365 0.63 2.1
## pp002        0.58             0.438 0.56 1.2
## pp003        0.46             0.267 0.73 2.7
## pp004        0.77             0.600 0.40 1.1
## pp005        0.65             0.596 0.40 1.2
## pp006        0.77             0.574 0.43 1.2
## pp007        0.78             0.686 0.31 1.1
## pp008                    0.69 0.443 0.56 1.4
## pp009        0.71             0.493 0.51 1.0
## pp010                    0.64 0.516 0.48 1.5
## pp011              0.78       0.601 0.40 1.0
## pp012  0.60        0.39       0.649 0.35 1.7
## pp013  0.47              0.41 0.381 0.62 2.5
## pp014  0.77                   0.630 0.37 1.0
## pp015  0.32  0.31             0.257 0.74 2.1
## pp016        0.67             0.601 0.40 1.2
## pp017              0.63       0.489 0.51 1.2
## pp018  0.43              0.31 0.317 0.68 2.4
## pp019  0.79                   0.591 0.41 1.2
## pp020        0.75             0.714 0.29 1.2
## pp021                    0.67 0.545 0.45 1.3
## pp022  0.74                   0.592 0.41 1.1
## pp023  0.54                   0.483 0.52 1.4
## pp024  0.83                   0.712 0.29 1.0
## pp025  0.77                   0.550 0.45 1.1
## pp026  0.31  0.42             0.461 0.54 2.8
## pp027       -0.43        0.56 0.633 0.37 2.1
## pp028                    0.38 0.241 0.76 1.7
## pp029              0.78       0.620 0.38 1.2
## pp030  0.73                   0.605 0.40 1.0
## pp031             -0.43       0.335 0.66 1.8
## pp032       -0.46             0.441 0.56 2.3
## pp033  0.72                   0.605 0.39 1.1
## pp034  0.39                   0.450 0.55 2.7
## pp035  0.68                   0.573 0.43 1.2
## pp036                         0.078 0.92 1.5
## pp037              0.56       0.517 0.48 1.5
## pp038                    0.63 0.638 0.36 1.5
## pp039                    0.53 0.535 0.46 1.7
## pp040             -0.54  0.31 0.695 0.31 2.2
## pp041        0.32  0.32       0.203 0.80 2.5
## pp042             -0.61  0.34 0.691 0.31 1.8
## pp043        0.67             0.508 0.49 1.3
## 
##                        MR2  MR1  MR3  MR4
## SS loadings           6.96 6.97 4.06 3.93
## Proportion Var        0.16 0.16 0.09 0.09
## Cumulative Var        0.16 0.32 0.42 0.51
## Proportion Explained  0.32 0.32 0.19 0.18
## Cumulative Proportion 0.32 0.64 0.82 1.00
## 
##  With factor correlations of 
##       MR2   MR1   MR3   MR4
## MR2  1.00  0.30  0.33 -0.19
## MR1  0.30  1.00  0.18 -0.30
## MR3  0.33  0.18  1.00 -0.09
## MR4 -0.19 -0.30 -0.09  1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 4 factors are sufficient.
## 
## The degrees of freedom for the null model are  903  and the objective function was  101.8 with Chi Square of  12193
## The degrees of freedom for the model are 737  and the objective function was  82.27 
## 
## The root mean square of the residuals (RMSR) is  0.07 
## The df corrected root mean square of the residuals is  0.08 
## 
## The harmonic number of observations is  136 with the empirical chi square  1241  with prob <  2.9e-28 
## The total number of observations was  136  with MLE Chi Square =  9639  with prob <  0 
## 
## Tucker Lewis Index of factoring reliability =  0.01
## RMSEA index =  0.323  and the 90 % confidence intervals are  0.293 0.303
## BIC =  6018
## Fit based upon off diagonal values = 0.94
## Measures of factor score adequacy             
##                                                MR2 MR1 MR3 MR4
## Correlation of scores with factors               1   1   1   1
## Multiple R square of scores with factors         1   1   1   1
## Minimum correlation of possible factor scores    1   1   1   1

Diagrama com fatores

fa.diagram(pca)

plot of chunk unnamed-chunk-19