library("gdata")
## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
## 
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
## 
## Attaching package: 'gdata'
## The following object is masked from 'package:stats':
## 
##     nobs
## The following object is masked from 'package:utils':
## 
##     object.size
au = read.xls("/Users/ferarevalo1/Documents/Econometria 1 /Automovil .xlsx")
au
##    A.o. precio ingreso Stock. ventas
## 1  1932  126.5    83.4   18.7   1.10
## 2  1933  128.5    82.6   17.9   1.53
## 3  1934  128.5    90.9   18.9   1.93
## 4  1935  120.5    99.3   19.4   2.87
## 5  1936  117.0   111.6   20.1   3.51
## 6  1937  121.0   115.6   21.5   3.51
## 7  1938  133.8   109.0   22.3   1.96
## 8  1939  131.0   118.5   22.7   2.72
## 9  1940  134.3   127.0   23.2   3.46
## 10 1941  144.9   147.9   24.5   3.76
## 11 1949  186.6   184.9   30.6   4.87
## 12 1950  186.6   200.5   33.1   6.37
## 13 1951  181.5   203.7   35.7   5.09
## 14 1952  195.7   209.2   37.6   4.19
## 15 1953  188.2   218.7   39.3   5.78
## 16 1954  190.2   221.6   41.6   5.47
## 17 1955  196.6   236.3   43.0   7.20
## 18 1956  193.4   247.2   47.0   5.90
au$lnventas = log(au$ventas)
au$lnprecio = log(au$precio)
au$lningresos = log(au$ingreso)
au$lnstock = log(au$Stock.)
reg = lm(formula = au$lnventas ~ au$lnprecio+au$lningresos, data = au)
summary(reg)
## 
## Call:
## lm(formula = au$lnventas ~ au$lnprecio + au$lningresos, data = au)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.27977 -0.09603  0.01293  0.11487  0.27186 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.1536     1.5240   0.101  0.92103    
## au$lnprecio    -2.0327     0.5683  -3.577  0.00275 ** 
## au$lningresos   2.2742     0.3031   7.502 1.88e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1624 on 15 degrees of freedom
## Multiple R-squared:  0.9159, Adjusted R-squared:  0.9047 
## F-statistic: 81.69 on 2 and 15 DF,  p-value: 8.619e-09
reg2 = lm(formula = au$lnventas ~ au$lnprecio+au$lningresos+au$lnstock)
summary(reg2)
## 
## Call:
## lm(formula = au$lnventas ~ au$lnprecio + au$lningresos + au$lnstock)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.21694 -0.07982  0.01759  0.10602  0.19165 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -2.7207     1.7324  -1.570   0.1386    
## au$lnprecio    -1.4220     0.5440  -2.614   0.0204 *  
## au$lningresos   3.2159     0.4543   7.079 5.51e-06 ***
## au$lnstock     -1.4789     0.5850  -2.528   0.0241 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1393 on 14 degrees of freedom
## Multiple R-squared:  0.9423, Adjusted R-squared:  0.9299 
## F-statistic: 76.17 on 3 and 14 DF,  p-value: 6.545e-09

La segunda regresion es la que tiene mayor nivel de significancia.

Si la X incrementa en 1% las ventas disminuiran en 1.48%. Si tiene sentido por que el consumidor ya tiene su demanda casi completa.

ci = read.xls("/Users/ferarevalo1/Documents/Econometria 1 /CasoI.xlsx")
ci$lnx = log(ci$X1940)
reg3 = lm(formula = ci$Promedio ~ ci$lnx)
summary(reg3)
## 
## Call:
## lm(formula = ci$Promedio ~ ci$lnx)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5154.4 -1782.9  -964.9  1328.2 11026.8 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -62187.1     8519.3  -7.300 3.96e-08 ***
## ci$lnx        8618.2      978.6   8.806 8.10e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3433 on 30 degrees of freedom
## Multiple R-squared:  0.7211, Adjusted R-squared:  0.7118 
## F-statistic: 77.55 on 1 and 30 DF,  p-value: 8.095e-10

Si hay convergencia por las variables.