Caso de Textiles

TextilesHolanda <- read.csv("C:/Users/MariaLourdes/Desktop/QUINTO SEMESTRE/ECONOMETRIA I/doblelog/TextilesHolanda.csv")
textil<-TextilesHolanda
#aplicarle log a todas las variables
textil$consumolog<-log(textil$consumo)
textil$ingresolog<-log(textil$ingreso)
textil$preciolog<-log(textil$precio)

Regresion doble-log

#regresion logaritmica
reg1<- lm(formula=consumolog~ingresolog+preciolog, data=textil)
summary(reg1)
## 
## Call:
## lm(formula = consumolog ~ ingresolog + preciolog, data = textil)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.055572 -0.026804  0.006832  0.019726  0.049666 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.16355    0.70480   4.489  0.00051 ***
## ingresolog   1.14316    0.15600   7.328 3.74e-06 ***
## preciolog   -0.82884    0.03611 -22.952 1.65e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03118 on 14 degrees of freedom
## Multiple R-squared:  0.9744, Adjusted R-squared:  0.9707 
## F-statistic:   266 on 2 and 14 DF,  p-value: 7.284e-12
#R2=0.9711

#Regresion 
#ln(consumo)=3.16355+1.1436*textil$ingresolog-0.82884*textil$preciolog
textil$lnconsumo1 <- 3.16355+1.1436*textil$ingresolog-0.82884*textil$preciolog
textil$econsumo1<-exp(textil$lnconsumo1)
#Se utiliza la formula convencional de R2

#R2 de la observada
num<- sum(textil$consumo-textil$econsumo1)^2
yprom<-textil$consumo/17
den<-sum(textil$consumo-yprom)^2

R2<-1-num/den
R2
## [1] 0.9999974

Caso mtcars

Regresion semi-log

#aplicarle log a mpg
mtcars$mpglog<-log(mtcars$mpg)
#regresion logaritmica
reg2<- lm(mpglog~wt+hp+am, data=mtcars)
summary(reg2)
## 
## Call:
## lm(formula = mpglog ~ wt + hp + am, data = mtcars)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.17137 -0.06955 -0.03865  0.07218  0.26567 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.7491397  0.1165798  32.159  < 2e-16 ***
## wt          -0.1757558  0.0399224  -4.402 0.000142 ***
## hp          -0.0016850  0.0004237  -3.976 0.000448 ***
## am           0.0516749  0.0607202   0.851 0.401970    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1119 on 28 degrees of freedom
## Multiple R-squared:  0.8724, Adjusted R-squared:  0.8587 
## F-statistic: 63.79 on 3 and 28 DF,  p-value: 1.24e-12
#R2=0.8724

#Regresion 
#ln(consumo)=3.7491397-0.1757558*wt-0.0016850*hp+0.0516749*am
mtcars$lnmpg1 <- 3.7491397-0.1757558*mtcars$wt-0.0016850*mtcars$hp+0.0516749*mtcars$am
mtcars$empg<-exp(mtcars$lnmpg1)
#Se utiliza la formula convencional de R2

#R2 de la observada
num<- sum(mtcars$mpg-mtcars$empg)^2
yprom<-mtcars$mpg/17
den<-sum(mtcars$mpg-yprom)^2

R2<-1-num/den
R2
## [1] 0.9999594