Introduction

It is now possible to collect a large amount of data about personal movement using activity monitoring devices such as a Fitbit, Nike Fuelband, or Jawbone Up. These type of devices are part of the “quantified self” movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks.

This test makes use of data from a personal activity monitoring device. This device collects data at 5 minute intervals through out the day. The data consists of two months of data from an anonymous individual collected during the months of October and November, 2012 and include the number of steps taken in 5 minute intervals each day.

Loading and preprocessing the data.

The data can be downloaded using the below R script.

downloadFiles <- function(dataURL = "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2Factivity.zip") {
    if (!file.exists("./activity.csv")) {
        # dir.create('./data')
        temp <- tempfile()
        download.file(dataURL, temp, method = "curl")
        unzip(temp, exdir = "./data/")
        unlink(temp)
    } else {
        message("data already downloaded.")
    }
}

The variables included in this dataset are:

The dataset is stored in a comma-separated-value (CSV) file and there are a total of 17,568 observations in this dataset.

fname = "./activity.csv"
if (!file.exists(fname)) downloadFiles()
data <- read.csv("./activity.csv")
data$date <- as.Date(data$date, format = "%Y-%m-%d")

summary(data)
##      steps            date               interval   
##  Min.   :  0.0   Min.   :2012-10-01   Min.   :   0  
##  1st Qu.:  0.0   1st Qu.:2012-10-16   1st Qu.: 589  
##  Median :  0.0   Median :2012-10-31   Median :1178  
##  Mean   : 37.4   Mean   :2012-10-31   Mean   :1178  
##  3rd Qu.: 12.0   3rd Qu.:2012-11-15   3rd Qu.:1766  
##  Max.   :806.0   Max.   :2012-11-30   Max.   :2355  
##  NA's   :2304
head(data)
##   steps       date interval
## 1    NA 2012-10-01        0
## 2    NA 2012-10-01        5
## 3    NA 2012-10-01       10
## 4    NA 2012-10-01       15
## 5    NA 2012-10-01       20
## 6    NA 2012-10-01       25
str(data)
## 'data.frame':    17568 obs. of  3 variables:
##  $ steps   : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ date    : Date, format: "2012-10-01" "2012-10-01" ...
##  $ interval: int  0 5 10 15 20 25 30 35 40 45 ...

What is mean total number of steps taken per day?

library(ggplot2)

stepsPerDay <- aggregate(steps ~ date, data, sum)
colnames(stepsPerDay) <- c("date", "steps")
meanSteps <- round(mean(stepsPerDay$steps), 2)
medianSteps <- round(median(stepsPerDay$steps), 2)

col_labels <- c(paste("Mean:", meanSteps), paste("Median:", medianSteps))
cols <- c("green", "yellow")

ggplot(stepsPerDay, aes(x = steps)) + geom_histogram(fill = "blue", binwidth = 1500) + 
    geom_point(aes(x = meanSteps, y = 0, color = "green"), size = 4, shape = 15) + 
    geom_point(aes(x = medianSteps, y = 0, color = "yellow"), size = 4, shape = 15) + 
    scale_color_manual(name = element_blank(), labels = col_labels, values = cols) + 
    labs(title = "Histogram of Steps Taken per Day", x = "Number of Steps", 
        y = "Count") + theme_bw() + theme(legend.position = "bottom")

plot of chunk steps_per_day

The mean total number of steps per day is 1.0766 × 104, the median is 1.0765 × 104.

What is the average daily activity pattern?

stepsPerInterval <- aggregate(steps ~ interval, data, FUN = mean, na.rm = TRUE)
colnames(stepsPerInterval) <- c("interval", "steps")
stepsPerInterval$interval <- as.integer(stepsPerInterval$interval)
plot(stepsPerInterval, type = "l", col = "blue")

plot of chunk daily_activity_pattern


maxStepInterval <- stepsPerInterval[which.max(stepsPerInterval$steps), ]$interval

The interval 835 contains the maximum number of steps.

Imputing missing values

na_indices <- which(is.na(data$steps))
nMissing <- nrow(na_indices)
dataMeans <- stepsPerInterval
na_replacements <- unlist(lapply(na_indices, FUN = function(idx) {
    interval = data[idx, ]$interval
    dataMeans[dataMeans$interval == interval, ]$steps
}))
imp_steps <- data$steps
imp_steps[na_indices] <- na_replacements
imp_data <- data.frame(steps = imp_steps, date = data$date, interval = data$interval)

Here the missing values were replaced using the means values of same interval across days, assuming the activities in daily routine. Summary the updated dataset.

summary(imp_data)
##      steps            date               interval   
##  Min.   :  0.0   Min.   :2012-10-01   Min.   :   0  
##  1st Qu.:  0.0   1st Qu.:2012-10-16   1st Qu.: 589  
##  Median :  0.0   Median :2012-10-31   Median :1178  
##  Mean   : 37.4   Mean   :2012-10-31   Mean   :1178  
##  3rd Qu.: 27.0   3rd Qu.:2012-11-15   3rd Qu.:1766  
##  Max.   :806.0   Max.   :2012-11-30   Max.   :2355

The total number of missing values in the dataset:

imp_stepsPerDay <- aggregate(steps ~ date, imp_data, sum)
colnames(imp_stepsPerDay) <- c("date", "steps")
meanSteps <- round(mean(imp_stepsPerDay$steps), 2)
medianSteps <- round(median(imp_stepsPerDay$steps), 2)

ggplot(imp_stepsPerDay, aes(x = steps)) + geom_histogram(fill = "blue", binwidth = 1500) + 
    geom_point(aes(x = meanSteps, y = 0, color = "green"), size = 4, shape = 15) + 
    geom_point(aes(x = medianSteps, y = 0, color = "yellow"), size = 4, shape = 15) + 
    scale_color_manual(name = element_blank(), labels = col_labels, values = cols) + 
    labs(title = "Histogram of Steps Taken per Day", x = "Number of Steps", 
        y = "Count") + theme_bw() + theme(legend.position = "bottom")

plot of chunk imputed_steps_per_day

Comparing with the previously calculations, the mean value remains unchanghed (since we imputed the means), the median value has shifted closer to the mean.

Are there differences in activity patterns between weekdays and weekends?

data$dayOfWeek <- (weekdays(as.Date(data$date, "%Y-%m-%d")) %in% c("Saturday", 
    "Sunday"))
for (i in 1:nrow(data)) {
    if (data$dayOfWeek[i]) {
        data$dayOfWeek[i] <- "weekend"
    } else {
        data$dayOfWeek[i] <- "weekday"
    }
}
data$dayOfWeek <- factor(data$dayOfWeek)

spi_dayOfWeek <- aggregate(steps ~ interval + dayOfWeek, data, FUN = mean, na.rm = TRUE)

# qplot(interval, steps,
# data=spi_dayOfWeek,facets=.~dayOfWeek)+geom_line(color='steelblue',
# size=1)

ggplot(spi_dayOfWeek, aes(x = interval, y = steps)) + geom_line(color = "blue", 
    size = 1) + facet_wrap(~dayOfWeek, nrow = 2, ncol = 1) + labs(x = "Interval", 
    y = "Number of steps") + theme_bw()

plot of chunk dayOfWeek

Activity on the weekends tends to be more spread out than the weekday, weekday's activities are more focus on morning 8-9am. One possible reason is weekday activities are more work related, whereas weekends tend to be more adhoc.