The purpose of the assignment is to learn to write & present reproducible research using US disaster data
Snopisis:Predownloaded data was absorbed into R, processesed and massaged to get what we need related to the health & economic impacts. In the following steps I show how I prioriised and subset data with the greatest impacts and most significant exponents
Steps:
1.Process previously downloaded “StormData.csv.bz2”
2.Aggregate and PRIORITISED TOP 15 EVENTS leasing to fatalities & injuries
RESULTS: HEALTH EFFECTS
3.Plot injuries
library("ggplot2")
qplot(EVTYPE, INJURIES, data=inj)+ geom_bar(stat="identity")+ ylab("No. of Injuries") + xlab("Enviromental Disaster Type") + ggtitle("Estimates of Injuries") + theme(axis.text.x = element_text(angle=80, hjust=1))

4.Plot fatalities
qplot(EVTYPE, FATALITIES, data=fat)+ geom_bar(stat="identity")+ ylab("No. of Fatalities") + xlab("Enviromental Disaster Type") + ggtitle("Estimates of Fatalities") + theme(axis.text.x = element_text(angle=80, hjust=1))

table(df$PROPDMGEXP)
##
## - ? + 0 1 2 3 4 5
## 465934 1 8 5 216 25 13 4 4 28
## 6 7 8 B h H K m M
## 4 5 1 40 1 6 424665 7 11330
table(df$CROPDMGEXP)
##
## ? 0 2 B k K m M
## 618413 7 19 1 9 21 281832 1 1994
5(b).Sum up the exponets I prioritised to use
x <- setdiff(df$PROPDMGEXP, c("", "?", "-1", "0"))
sum(df$PROPDMGEXP %in% x)
## [1] 436139
y <- setdiff(df$CROPDMGEXP, c("", "?", "-1", "0"))
sum(df$CROPDMGEXP %in% y)
## [1] 283858
6.Subset dataframe to have at least one exponent each for property or crop
7.Multiply by exponent
8 Re-arrange, aggregate & sort
RESULTS: ECONOMIC EFFECTS
9 Plot property damage
library("ggplot2")
qplot(EVTYPE, SUMPROPDMG, data=property)+ geom_bar(stat="identity")+ ylab("Property Damage Amount $") + xlab("Enviromental Disaster Type") + ggtitle("Estimates of Property Damange") + theme(axis.text.x = element_text(angle=80, hjust=1))

10. Plot crop damage
qplot(EVTYPE, SUMCROPDMG, data=crop)+ geom_bar(stat="identity")+ ylab("Property Damage Amount $") + xlab("Enviromental Disaster Type") + ggtitle("Estimates of Crop Damange") + theme(axis.text.x = element_text(angle=80, hjust=1))
