From National Statistics Office, download excel format data, and manipulate it for a long time. 5 year interval, but enough to check the changes
# install.packages("xlsx", repos = "https://cran.rstudio.com")
library(xlsx)
## Loading required package: rJava
## Loading required package: xlsxjars
library(knitr)
lt.kr.70.13 <- read.xlsx("../data/lifetable_kr.xlsx", 1, startRow = 3, endRow = 24, colIndex = 1:133, header = FALSE)
str(lt.kr.70.13)
## 'data.frame': 22 obs. of 133 variables:
## $ X1 : num 0 1 5 10 15 20 25 30 35 40 ...
## $ X2 : num 100000 95848 94546 93413 92625 ...
## $ X3 : num 100000 95811 94493 93303 92465 ...
## $ X4 : num 100000 95894 94610 93539 92803 ...
## $ X5 : num 100000 95962 94694 93626 92876 ...
## $ X6 : num 100000 95925 94641 93517 92720 ...
## $ X7 : num 100000 96007 94757 93749 93049 ...
## $ X8 : num 100000 96072 94838 93831 93117 ...
## $ X9 : num 100000 96036 94785 93724 92966 ...
## $ X10 : num 100000 96117 94900 93951 93286 ...
## $ X11 : num 100000 96180 94978 94029 93350 ...
## $ X12 : num 100000 96144 94926 93924 93202 ...
## $ X13 : num 100000 96224 95039 94146 93514 ...
## $ X14 : num 100000 96285 95114 94219 93574 ...
## $ X15 : num 100000 96249 95063 94117 93430 ...
## $ X16 : num 100000 96328 95174 94334 93733 ...
## $ X17 : num 100000 96386 95247 94403 93789 ...
## $ X18 : num 100000 96351 95196 94303 93650 ...
## $ X19 : num 100000 96429 95306 94515 93944 ...
## $ X20 : num 100000 96485 95376 94581 93997 ...
## $ X21 : num 100000 96450 95326 94483 93861 ...
## $ X22 : num 100000 96527 95434 94690 94147 ...
## $ X23 : num 100000 96582 95502 94752 94197 ...
## $ X24 : num 100000 96547 95452 94656 94065 ...
## $ X25 : num 100000 96623 95559 94859 94342 ...
## $ X26 : num 100000 96675 95624 94917 94389 ...
## $ X27 : num 100000 96641 95575 94824 94261 ...
## $ X28 : num 100000 96716 95680 95021 94531 ...
## $ X29 : num 100000 96766 95743 95077 94575 ...
## $ X30 : num 100000 96732 95694 94985 94450 ...
## $ X31 : num 100000 96806 95798 95178 94712 ...
## $ X32 : num 100000 96980 96022 95389 94927 ...
## $ X33 : num 100000 96955 95985 95312 94815 ...
## $ X34 : num 100000 97010 96065 95474 95050 ...
## $ X35 : num 100000 97180 96284 95681 95256 ...
## $ X36 : num 100000 97162 96257 95618 95156 ...
## $ X37 : num 100000 97202 96315 95751 95366 ...
## $ X38 : num 100000 97367 96528 95955 95563 ...
## $ X39 : num 100000 97356 96510 95905 95474 ...
## $ X40 : num 100000 97381 96549 96011 95661 ...
## $ X41 : num 100000 97541 96756 96211 95851 ...
## $ X42 : num 100000 97536 96747 96172 95772 ...
## $ X43 : num 100000 97548 96768 96255 95938 ...
## $ X44 : num 100000 97809 97108 96608 96279 ...
## $ X45 : num 100000 97776 97062 96530 96160 ...
## $ X46 : num 100000 97848 97161 96695 96410 ...
## $ X47 : num 100000 98049 97423 96963 96663 ...
## $ X48 : num 100000 97993 97347 96854 96513 ...
## $ X49 : num 100000 98111 97507 97083 96827 ...
## $ X50 : num 100000 98230 97661 97243 96956 ...
## $ X51 : num 100000 98176 97588 97134 96810 ...
## $ X52 : num 100000 98290 97743 97362 97114 ...
## $ X53 : num 100000 98394 97878 97497 97222 ...
## $ X54 : num 100000 98342 97807 97389 97082 ...
## $ X55 : num 100000 98453 97956 97615 97375 ...
## $ X56 : num 100000 98518 98040 97690 97431 ...
## $ X57 : num 100000 98460 97962 97571 97274 ...
## $ X58 : num 100000 98582 98127 97823 97603 ...
## $ X59 : num 100000 98631 98190 97869 97624 ...
## $ X60 : num 100000 98570 98107 97740 97454 ...
## $ X61 : num 100000 98701 98283 98012 97810 ...
## $ X62 : num 100000 98743 98337 98041 97814 ...
## $ X63 : num 100000 98674 98244 97903 97637 ...
## $ X64 : num 100000 98822 98443 98195 98009 ...
## $ X65 : num 100000 98846 98473 98199 97989 ...
## $ X66 : num 100000 98770 98371 98055 97807 ...
## $ X67 : num 100000 98933 98589 98361 98190 ...
## $ X68 : num 100000 98939 98596 98341 98149 ...
## $ X69 : num 100000 98872 98506 98212 97984 ...
## $ X70 : num 100000 99016 98698 98488 98333 ...
## $ X71 : num 100000 99025 98709 98472 98297 ...
## $ X72 : num 100000 98966 98630 98355 98148 ...
## $ X73 : num 100000 99093 98799 98604 98464 ...
## $ X74 : num 100000 99097 98804 98585 98414 ...
## $ X75 : num 100000 99049 98737 98481 98279 ...
## $ X76 : num 100000 99153 98880 98701 98565 ...
## $ X77 : num 100000 99164 98891 98689 98523 ...
## $ X78 : num 100000 99125 98836 98597 98400 ...
## $ X79 : num 100000 99209 98955 98791 98659 ...
## $ X80 : num 100000 99226 98978 98797 98644 ...
## $ X81 : num 100000 99195 98930 98716 98534 ...
## $ X82 : num 100000 99262 99032 98886 98766 ...
## $ X83 : num 100000 99284 99057 98896 98755 ...
## $ X84 : num 100000 99259 99016 98825 98658 ...
## $ X85 : num 100000 99311 99103 98974 98863 ...
## $ X86 : num 100000 99344 99137 98990 98866 ...
## $ X87 : num 100000 99326 99104 98932 98785 ...
## $ X88 : num 100000 99362 99173 99053 98954 ...
## $ X89 : num 100000 99398 99211 99076 98966 ...
## $ X90 : num 100000 99387 99184 99029 98900 ...
## $ X91 : num 100000 99409 99238 99127 99038 ...
## $ X92 : num 100000 99406 99225 99098 98995 ...
## $ X93 : num 100000 99373 99177 99031 98912 ...
## $ X94 : num 100000 99441 99277 99172 99087 ...
## $ X95 : num 100000 99428 99253 99134 99038 ...
## $ X96 : num 100000 99379 99188 99051 98942 ...
## $ X97 : num 100000 99483 99325 99225 99145 ...
## $ X98 : num 100000 99449 99290 99182 99094 ...
## $ X99 : num 100000 99403 99233 99109 99010 ...
## [list output truncated]
gender.yr <- paste(c("A", "M", "F"), rep(1970:2013, each = 3), sep = "")
options(width = 180)
names(lt.kr.70.13) <- c("age", gender.yr)
cbind(head(gender.yr, n = 10), tail(gender.yr, n = 10))
## [,1] [,2]
## [1,] "A1970" "F2010"
## [2,] "M1970" "A2011"
## [3,] "F1970" "M2011"
## [4,] "A1971" "F2011"
## [5,] "M1971" "A2012"
## [6,] "F1971" "M2012"
## [7,] "A1972" "F2012"
## [8,] "M1972" "A2013"
## [9,] "F1972" "M2013"
## [10,] "A1973" "F2013"
str(lt.kr.70.13)
## 'data.frame': 22 obs. of 133 variables:
## $ age : num 0 1 5 10 15 20 25 30 35 40 ...
## $ A1970: num 100000 95848 94546 93413 92625 ...
## $ M1970: num 100000 95811 94493 93303 92465 ...
## $ F1970: num 100000 95894 94610 93539 92803 ...
## $ A1971: num 100000 95962 94694 93626 92876 ...
## $ M1971: num 100000 95925 94641 93517 92720 ...
## $ F1971: num 100000 96007 94757 93749 93049 ...
## $ A1972: num 100000 96072 94838 93831 93117 ...
## $ M1972: num 100000 96036 94785 93724 92966 ...
## $ F1972: num 100000 96117 94900 93951 93286 ...
## $ A1973: num 100000 96180 94978 94029 93350 ...
## $ M1973: num 100000 96144 94926 93924 93202 ...
## $ F1973: num 100000 96224 95039 94146 93514 ...
## $ A1974: num 100000 96285 95114 94219 93574 ...
## $ M1974: num 100000 96249 95063 94117 93430 ...
## $ F1974: num 100000 96328 95174 94334 93733 ...
## $ A1975: num 100000 96386 95247 94403 93789 ...
## $ M1975: num 100000 96351 95196 94303 93650 ...
## $ F1975: num 100000 96429 95306 94515 93944 ...
## $ A1976: num 100000 96485 95376 94581 93997 ...
## $ M1976: num 100000 96450 95326 94483 93861 ...
## $ F1976: num 100000 96527 95434 94690 94147 ...
## $ A1977: num 100000 96582 95502 94752 94197 ...
## $ M1977: num 100000 96547 95452 94656 94065 ...
## $ F1977: num 100000 96623 95559 94859 94342 ...
## $ A1978: num 100000 96675 95624 94917 94389 ...
## $ M1978: num 100000 96641 95575 94824 94261 ...
## $ F1978: num 100000 96716 95680 95021 94531 ...
## $ A1979: num 100000 96766 95743 95077 94575 ...
## $ M1979: num 100000 96732 95694 94985 94450 ...
## $ F1979: num 100000 96806 95798 95178 94712 ...
## $ A1980: num 100000 96980 96022 95389 94927 ...
## $ M1980: num 100000 96955 95985 95312 94815 ...
## $ F1980: num 100000 97010 96065 95474 95050 ...
## $ A1981: num 100000 97180 96284 95681 95256 ...
## $ M1981: num 100000 97162 96257 95618 95156 ...
## $ F1981: num 100000 97202 96315 95751 95366 ...
## $ A1982: num 100000 97367 96528 95955 95563 ...
## $ M1982: num 100000 97356 96510 95905 95474 ...
## $ F1982: num 100000 97381 96549 96011 95661 ...
## $ A1983: num 100000 97541 96756 96211 95851 ...
## $ M1983: num 100000 97536 96747 96172 95772 ...
## $ F1983: num 100000 97548 96768 96255 95938 ...
## $ A1984: num 100000 97809 97108 96608 96279 ...
## $ M1984: num 100000 97776 97062 96530 96160 ...
## $ F1984: num 100000 97848 97161 96695 96410 ...
## $ A1985: num 100000 98049 97423 96963 96663 ...
## $ M1985: num 100000 97993 97347 96854 96513 ...
## $ F1985: num 100000 98111 97507 97083 96827 ...
## $ A1986: num 100000 98230 97661 97243 96956 ...
## $ M1986: num 100000 98176 97588 97134 96810 ...
## $ F1986: num 100000 98290 97743 97362 97114 ...
## $ A1987: num 100000 98394 97878 97497 97222 ...
## $ M1987: num 100000 98342 97807 97389 97082 ...
## $ F1987: num 100000 98453 97956 97615 97375 ...
## $ A1988: num 100000 98518 98040 97690 97431 ...
## $ M1988: num 100000 98460 97962 97571 97274 ...
## $ F1988: num 100000 98582 98127 97823 97603 ...
## $ A1989: num 100000 98631 98190 97869 97624 ...
## $ M1989: num 100000 98570 98107 97740 97454 ...
## $ F1989: num 100000 98701 98283 98012 97810 ...
## $ A1990: num 100000 98743 98337 98041 97814 ...
## $ M1990: num 100000 98674 98244 97903 97637 ...
## $ F1990: num 100000 98822 98443 98195 98009 ...
## $ A1991: num 100000 98846 98473 98199 97989 ...
## $ M1991: num 100000 98770 98371 98055 97807 ...
## $ F1991: num 100000 98933 98589 98361 98190 ...
## $ A1992: num 100000 98939 98596 98341 98149 ...
## $ M1992: num 100000 98872 98506 98212 97984 ...
## $ F1992: num 100000 99016 98698 98488 98333 ...
## $ A1993: num 100000 99025 98709 98472 98297 ...
## $ M1993: num 100000 98966 98630 98355 98148 ...
## $ F1993: num 100000 99093 98799 98604 98464 ...
## $ A1994: num 100000 99097 98804 98585 98414 ...
## $ M1994: num 100000 99049 98737 98481 98279 ...
## $ F1994: num 100000 99153 98880 98701 98565 ...
## $ A1995: num 100000 99164 98891 98689 98523 ...
## $ M1995: num 100000 99125 98836 98597 98400 ...
## $ F1995: num 100000 99209 98955 98791 98659 ...
## $ A1996: num 100000 99226 98978 98797 98644 ...
## $ M1996: num 100000 99195 98930 98716 98534 ...
## $ F1996: num 100000 99262 99032 98886 98766 ...
## $ A1997: num 100000 99284 99057 98896 98755 ...
## $ M1997: num 100000 99259 99016 98825 98658 ...
## $ F1997: num 100000 99311 99103 98974 98863 ...
## $ A1998: num 100000 99344 99137 98990 98866 ...
## $ M1998: num 100000 99326 99104 98932 98785 ...
## $ F1998: num 100000 99362 99173 99053 98954 ...
## $ A1999: num 100000 99398 99211 99076 98966 ...
## $ M1999: num 100000 99387 99184 99029 98900 ...
## $ F1999: num 100000 99409 99238 99127 99038 ...
## $ A2000: num 100000 99406 99225 99098 98995 ...
## $ M2000: num 100000 99373 99177 99031 98912 ...
## $ F2000: num 100000 99441 99277 99172 99087 ...
## $ A2001: num 100000 99428 99253 99134 99038 ...
## $ M2001: num 100000 99379 99188 99051 98942 ...
## $ F2001: num 100000 99483 99325 99225 99145 ...
## $ A2002: num 100000 99449 99290 99182 99094 ...
## $ M2002: num 100000 99403 99233 99109 99010 ...
## [list output truncated]
Compare the survival function plots of 1970 and 2013
# par(family = "AppleGothic")
plot(A2013 ~ age, data = lt.kr.70.13, type = "b", ann = FALSE, xaxt = "n", yaxt = "n")
lines(A1970 ~ age, data = lt.kr.70.13, type = "b")
axis(side = 1, at = lt.kr.70.13$age, label = lt.kr.70.13$age)
axis(side = 2, at = seq(0, 100000, by = 25000), labels = seq(0, 100, by = 25))
main.title <- "Survival Function, 1970 vs 2013"
x.lab <- "Age (Years)"
y.lab <- "Proportion of Survival (%)"
title(main = main.title, xlab = x.lab, ylab = y.lab)
text(x = c(60, 82), y = c(52000, 80000), labels = c(1970, 2013))
Shade the difference of life expectancies
poly.kr.x <- c(lt.kr.70.13$age, rev(lt.kr.70.13$age))
poly.kr.y <- c(lt.kr.70.13$A2013, rev(lt.kr.70.13$A1970))
poly.kr <- data.frame(x = poly.kr.x, y = poly.kr.y)
Use red color to specify the difference
# par(family="AppleGothic")
plot(A2013 ~ age, data = lt.kr.70.13, type = "b", ann = FALSE, xaxt = "n", yaxt = "n")
lines(A1970 ~ age, data = lt.kr.70.13, type = "b")
axis(side = 1, at = lt.kr.70.13$age, label = lt.kr.70.13$age)
axis(side = 2, at = seq(0, 100000, by = 25000), labels = seq(0, 100, by = 25))
main.title <- "Survival Function, 1970 vs 2013"
x.lab <- "Age (Years)"
y.lab <- "Proportion of Survival (%)"
title(main = main.title, xlab = x.lab, ylab = y.lab)
text(x = c(60, 82), y = c(52000, 80000), labels = c(1970, 2013))
polygon(poly.kr, angle = 45, density = 15, col = "grey", border = NA)
source
the area.R()
function that was dump()
ed.
source("area.R")
options(digits = 3)
(s.2013 <- area.R(lt.kr.70.13$age, lt.kr.70.13$A2013)/100000)
## [1] 81.8
(s.1970 <- area.R(lt.kr.70.13$age, lt.kr.70.13$A1970)/100000)
## [1] 61.4
s.2013 - s.1970
## [1] 20.4
In order to compute the genderwise life expectancies use mapply()
. Fix x = lt.kr.70.13$age
in area.R(x, y)
, and extract the column indices from each column
# substr(names(lt.kr.70.13), start = 1, stop = 1)
A.idx <- substr(names(lt.kr.70.13), start = 1, stop = 1) == "A"
M.idx <- substr(names(lt.kr.70.13), start = 1, stop = 1) == "M"
F.idx <- substr(names(lt.kr.70.13), start = 1, stop = 1) == "F"
mapply()
anonymous function
(A.e0 <- mapply(function(y) {area.R(x = lt.kr.70.13$age, y)}, lt.kr.70.13[, A.idx])/100000)
## A1970 A1971 A1972 A1973 A1974 A1975 A1976 A1977 A1978 A1979 A1980 A1981 A1982 A1983 A1984 A1985 A1986 A1987 A1988 A1989 A1990 A1991 A1992 A1993 A1994 A1995 A1996 A1997 A1998 A1999
## 61.4 61.8 62.2 62.5 62.9 63.2 63.5 63.9 64.2 64.5 65.0 65.4 65.9 66.3 66.9 67.5 68.1 68.7 69.2 69.6 70.0 70.4 70.8 72.4 72.7 73.1 73.5 73.9 74.3 75.5
## A2000 A2001 A2002 A2003 A2004 A2005 A2006 A2007 A2008 A2009 A2010 A2011 A2012 A2013
## 76.0 76.5 77.0 77.4 78.0 78.6 79.1 79.5 80.0 80.5 80.7 81.1 81.4 81.8
(M.e0 <- mapply(function(y) {area.R(x = lt.kr.70.13$age, y)}, lt.kr.70.13[, M.idx])/100000)
## M1970 M1971 M1972 M1973 M1974 M1975 M1976 M1977 M1978 M1979 M1980 M1981 M1982 M1983 M1984 M1985 M1986 M1987 M1988 M1989 M1990 M1991 M1992 M1993 M1994 M1995 M1996 M1997 M1998 M1999
## 58.5 58.8 59.1 59.4 59.7 60.0 60.2 60.5 60.8 61.0 61.5 62.0 62.4 62.9 63.5 64.0 64.7 65.3 65.8 66.2 66.7 67.0 67.5 68.6 69.0 69.3 69.8 70.3 70.8 71.7
## M2000 M2001 M2002 M2003 M2004 M2005 M2006 M2007 M2008 M2009 M2010 M2011 M2012 M2013
## 72.3 72.8 73.4 73.8 74.5 75.1 75.7 76.1 76.5 77.0 77.2 77.6 77.9 78.5
(F.e0 <- mapply(function(y) {area.R(x = lt.kr.70.13$age, y)}, lt.kr.70.13[, F.idx])/100000)
## F1970 F1971 F1972 F1973 F1974 F1975 F1976 F1977 F1978 F1979 F1980 F1981 F1982 F1983 F1984 F1985 F1986 F1987 F1988 F1989 F1990 F1991 F1992 F1993 F1994 F1995 F1996 F1997 F1998 F1999
## 64.5 65.0 65.4 65.9 66.3 66.7 67.1 67.4 67.8 68.1 68.6 69.1 69.5 70.0 70.6 71.2 71.7 72.2 72.7 73.1 73.5 73.8 74.2 76.1 76.4 76.7 77.1 77.4 77.7 79.2
## F2000 F2001 F2002 F2003 F2004 F2005 F2006 F2007 F2008 F2009 F2010 F2011 F2012 F2013
## 79.6 80.0 80.4 80.8 81.3 81.8 82.3 82.7 83.2 83.6 83.9 84.3 84.5 84.9
plot()
and lines()
plot(1970:2013, A.e0, type = "b", ylim = c(50, 90), ann = FALSE, pch = 17)
lines(1970:2013, M.e0, col = "blue", type = "b", pch = 17)
lines(1970:2013, F.e0, col = "red", type = "b", pch = 17)
main.title.2 <- "Change of Life Expectancy"
x.lab.2 <- "Year"
y.lab.2 <- "Life Expectancy (Years)"
title(main = main.title.2, xlab = x.lab.2, ylab = y.lab.2)
legend("topleft", inset = 0.1, pch = 17, col = c("red", "black", "blue"), legend=c("Women", "All", "Men"))
Put reshape2
in the library to construct a long form data frame for ggplot()
and apply melt()
. Set up and another data frame composed of age
, A1970
, A2013
(lt.kr.df <- lt.kr.70.13[c("age", "A1970", "A2013")])
## age A1970 A2013
## 1 0 100000 100000
## 2 1 95848 99706
## 3 5 94546 99632
## 4 10 93413 99578
## 5 15 92625 99531
## 6 20 91441 99415
## 7 25 89722 99233
## 8 30 88194 98991
## 9 35 86596 98661
## 10 40 84906 98218
## 11 45 82264 97544
## 12 50 78518 96513
## 13 55 73142 94992
## 14 60 65810 92889
## 15 65 56696 89864
## 16 70 45939 85435
## 17 75 34437 78024
## 18 80 21282 66215
## 19 85 0 49212
## 20 90 0 29191
## 21 95 0 12261
## 22 100 0 3149
library(reshape2)
, and , use melt()
to transform into long form data frame
library(reshape2)
(lt.kr.melt <- melt(lt.kr.df, id.vars = "age", measure.vars = c("A1970", "A2013"), variable.name = "years", value.name = "lx"))
## age years lx
## 1 0 A1970 100000
## 2 1 A1970 95848
## 3 5 A1970 94546
## 4 10 A1970 93413
## 5 15 A1970 92625
## 6 20 A1970 91441
## 7 25 A1970 89722
## 8 30 A1970 88194
## 9 35 A1970 86596
## 10 40 A1970 84906
## 11 45 A1970 82264
## 12 50 A1970 78518
## 13 55 A1970 73142
## 14 60 A1970 65810
## 15 65 A1970 56696
## 16 70 A1970 45939
## 17 75 A1970 34437
## 18 80 A1970 21282
## 19 85 A1970 0
## 20 90 A1970 0
## 21 95 A1970 0
## 22 100 A1970 0
## 23 0 A2013 100000
## 24 1 A2013 99706
## 25 5 A2013 99632
## 26 10 A2013 99578
## 27 15 A2013 99531
## 28 20 A2013 99415
## 29 25 A2013 99233
## 30 30 A2013 98991
## 31 35 A2013 98661
## 32 40 A2013 98218
## 33 45 A2013 97544
## 34 50 A2013 96513
## 35 55 A2013 94992
## 36 60 A2013 92889
## 37 65 A2013 89864
## 38 70 A2013 85435
## 39 75 A2013 78024
## 40 80 A2013 66215
## 41 85 A2013 49212
## 42 90 A2013 29191
## 43 95 A2013 12261
## 44 100 A2013 3149
Compare survival function plots for 1970 and 2013 with ggplot()
. What is the effect of the order of operation in geom_point()
and shape=21:22, fill="white"
library(ggplot2)
#(g.kr.1 <- ggplot(data = lt.kr.melt, aes(x = age, y = lx/1000, colour = years, shape = years)) + geom_line())
(g.kr.1 <- ggplot() +
geom_line(data = lt.kr.melt, aes(x = age, y = lx/1000, colour = years)))
(g.kr.2 <- g.kr.1 +
geom_point(data = lt.kr.melt, aes(x = age, y = lx/1000, colour = years), shape = 21, fill = "white", size = 2) +
theme_bw())
(g.kr.3 <- g.kr.2 +
xlab(x.lab) +
ylab(y.lab) +
ggtitle(main.title) +
scale_colour_discrete(name = "Years", labels = c("1970", "2013")))
(g.kr.4 <- g.kr.3 +
theme(legend.position=c(0.25, 0.25)))
Use poly.kr
.
(p.kr.1 <- g.kr.4 +
geom_polygon(data = poly.kr, aes(x = x, y = y/1000), alpha = 0.3, fill = "grey"))
(p.kr.2 <- p.kr.1 +
geom_point(data = lt.kr.melt, aes(x = age, y = lx/1000, colour = years), shape = 21, fill = "white", size = 2))
(p.kr.3 <- p.kr.2 + annotate("text", x = c(55, 63, 80), y = c(60, 75, 85), label = c("1970", "Difference of\nLife\nExpectancies", "2013"), colour = "blue"))
(lt.e0.df <- data.frame(year = 1970:2013, A = A.e0, M = M.e0, F = F.e0))
## year A M F
## A1970 1970 61.4 58.5 64.5
## A1971 1971 61.8 58.8 65.0
## A1972 1972 62.2 59.1 65.4
## A1973 1973 62.5 59.4 65.9
## A1974 1974 62.9 59.7 66.3
## A1975 1975 63.2 60.0 66.7
## A1976 1976 63.5 60.2 67.1
## A1977 1977 63.9 60.5 67.4
## A1978 1978 64.2 60.8 67.8
## A1979 1979 64.5 61.0 68.1
## A1980 1980 65.0 61.5 68.6
## A1981 1981 65.4 62.0 69.1
## A1982 1982 65.9 62.4 69.5
## A1983 1983 66.3 62.9 70.0
## A1984 1984 66.9 63.5 70.6
## A1985 1985 67.5 64.0 71.2
## A1986 1986 68.1 64.7 71.7
## A1987 1987 68.7 65.3 72.2
## A1988 1988 69.2 65.8 72.7
## A1989 1989 69.6 66.2 73.1
## A1990 1990 70.0 66.7 73.5
## A1991 1991 70.4 67.0 73.8
## A1992 1992 70.8 67.5 74.2
## A1993 1993 72.4 68.6 76.1
## A1994 1994 72.7 69.0 76.4
## A1995 1995 73.1 69.3 76.7
## A1996 1996 73.5 69.8 77.1
## A1997 1997 73.9 70.3 77.4
## A1998 1998 74.3 70.8 77.7
## A1999 1999 75.5 71.7 79.2
## A2000 2000 76.0 72.3 79.6
## A2001 2001 76.5 72.8 80.0
## A2002 2002 77.0 73.4 80.4
## A2003 2003 77.4 73.8 80.8
## A2004 2004 78.0 74.5 81.3
## A2005 2005 78.6 75.1 81.8
## A2006 2006 79.1 75.7 82.3
## A2007 2007 79.5 76.1 82.7
## A2008 2008 80.0 76.5 83.2
## A2009 2009 80.5 77.0 83.6
## A2010 2010 80.7 77.2 83.9
## A2011 2011 81.1 77.6 84.3
## A2012 2012 81.4 77.9 84.5
## A2013 2013 81.8 78.5 84.9
(lt.e0.melt <- melt(lt.e0.df, id.vars = "year", measure.vars = c("A", "M", "F"), variable.name = "gender", value.name = "e0"))
## year gender e0
## 1 1970 A 61.4
## 2 1971 A 61.8
## 3 1972 A 62.2
## 4 1973 A 62.5
## 5 1974 A 62.9
## 6 1975 A 63.2
## 7 1976 A 63.5
## 8 1977 A 63.9
## 9 1978 A 64.2
## 10 1979 A 64.5
## 11 1980 A 65.0
## 12 1981 A 65.4
## 13 1982 A 65.9
## 14 1983 A 66.3
## 15 1984 A 66.9
## 16 1985 A 67.5
## 17 1986 A 68.1
## 18 1987 A 68.7
## 19 1988 A 69.2
## 20 1989 A 69.6
## 21 1990 A 70.0
## 22 1991 A 70.4
## 23 1992 A 70.8
## 24 1993 A 72.4
## 25 1994 A 72.7
## 26 1995 A 73.1
## 27 1996 A 73.5
## 28 1997 A 73.9
## 29 1998 A 74.3
## 30 1999 A 75.5
## 31 2000 A 76.0
## 32 2001 A 76.5
## 33 2002 A 77.0
## 34 2003 A 77.4
## 35 2004 A 78.0
## 36 2005 A 78.6
## 37 2006 A 79.1
## 38 2007 A 79.5
## 39 2008 A 80.0
## 40 2009 A 80.5
## 41 2010 A 80.7
## 42 2011 A 81.1
## 43 2012 A 81.4
## 44 2013 A 81.8
## 45 1970 M 58.5
## 46 1971 M 58.8
## 47 1972 M 59.1
## 48 1973 M 59.4
## 49 1974 M 59.7
## 50 1975 M 60.0
## 51 1976 M 60.2
## 52 1977 M 60.5
## 53 1978 M 60.8
## 54 1979 M 61.0
## 55 1980 M 61.5
## 56 1981 M 62.0
## 57 1982 M 62.4
## 58 1983 M 62.9
## 59 1984 M 63.5
## 60 1985 M 64.0
## 61 1986 M 64.7
## 62 1987 M 65.3
## 63 1988 M 65.8
## 64 1989 M 66.2
## 65 1990 M 66.7
## 66 1991 M 67.0
## 67 1992 M 67.5
## 68 1993 M 68.6
## 69 1994 M 69.0
## 70 1995 M 69.3
## 71 1996 M 69.8
## 72 1997 M 70.3
## 73 1998 M 70.8
## 74 1999 M 71.7
## 75 2000 M 72.3
## 76 2001 M 72.8
## 77 2002 M 73.4
## 78 2003 M 73.8
## 79 2004 M 74.5
## 80 2005 M 75.1
## 81 2006 M 75.7
## 82 2007 M 76.1
## 83 2008 M 76.5
## 84 2009 M 77.0
## 85 2010 M 77.2
## 86 2011 M 77.6
## 87 2012 M 77.9
## 88 2013 M 78.5
## 89 1970 F 64.5
## 90 1971 F 65.0
## 91 1972 F 65.4
## 92 1973 F 65.9
## 93 1974 F 66.3
## 94 1975 F 66.7
## 95 1976 F 67.1
## 96 1977 F 67.4
## 97 1978 F 67.8
## 98 1979 F 68.1
## 99 1980 F 68.6
## 100 1981 F 69.1
## 101 1982 F 69.5
## 102 1983 F 70.0
## 103 1984 F 70.6
## 104 1985 F 71.2
## 105 1986 F 71.7
## 106 1987 F 72.2
## 107 1988 F 72.7
## 108 1989 F 73.1
## 109 1990 F 73.5
## 110 1991 F 73.8
## 111 1992 F 74.2
## 112 1993 F 76.1
## 113 1994 F 76.4
## 114 1995 F 76.7
## 115 1996 F 77.1
## 116 1997 F 77.4
## 117 1998 F 77.7
## 118 1999 F 79.2
## 119 2000 F 79.6
## 120 2001 F 80.0
## 121 2002 F 80.4
## 122 2003 F 80.8
## 123 2004 F 81.3
## 124 2005 F 81.8
## 125 2006 F 82.3
## 126 2007 F 82.7
## 127 2008 F 83.2
## 128 2009 F 83.6
## 129 2010 F 83.9
## 130 2011 F 84.3
## 131 2012 F 84.5
## 132 2013 F 84.9
(e0.1 <- ggplot(lt.e0.melt, aes(x = year, y = e0, colour = gender)) +
theme_bw() +
geom_line() +
geom_point(shape = 24, aes(fill = gender), size = 2))
(e0.2 <- e0.1 +
ylim(50, 90))
(e0.3 <- e0.2 +
xlab(x.lab.2) +
ylab(y.lab.2) +
ggtitle(main.title.2))
(e0.4 <- e0.3 +
labs(fill = "Gender") +
scale_fill_manual(values = c("black", "blue", "red"), labels = c("All", "Men", "Women")) +
scale_colour_manual(values = c("black", "blue", "red"), labels = c("All", "Men", "Women")) +
guides(colour = "none"))
(e0.5 <- e0.4 +
theme(legend.position = c(0.2, 0.8)))
save.image("lt_kr_160413.rda")