Banks <- read.delim("~/Dropbox/Teaching/Econometrics/Banks for R.txt")
reg <- lm(Banks$Gastos ~ Banks$Activos + Banks$Agencias, data=Banks)
Banks$residsq = (resid(reg))^2
Banks$Activossq = Banks$Activos^2
Banks$Agenciassq = Banks$Agencias^2
Banks$AA = Banks$Activos*Banks$Agencias
Banks
##         Banco Gastos Activos Agencias    residsq  Activossq Agenciassq
## 1         G&T   48.8   831.5       30 53.5328971  691392.25        900
## 2  INDUSTRIAL   43.2  1204.0       18  0.3587672 1449616.00        324
## 3   OCCIDENTE   39.4  1153.5       20 18.7635539 1330562.25        400
## 4        CAFE   29.8   499.6       25  0.5653431  249600.16        625
## 5        AGRO   26.2   466.6       30 27.5117820  217715.56        900
## 6         BAM   24.8   522.3       12 13.8391394  272797.29        144
## 7   INTERNAC.   24.0   376.6       12 48.0004093  141827.56        144
## 8       INMOB   21.5   431.3       20  5.5900786  186019.69        400
## 9   CONSTRUC.   18.3   282.2       10 26.4924181   79636.84        100
## 10   EJERCITO   15.6   311.8       13  0.1225887   97219.24        169
## 11     LLOYDS   14.3   284.5        7  9.4048393   80940.25         49
## 12      METRO   12.9   339.0        8  0.2435533  114921.00         64
## 13      BANEX   12.5   462.8        3  0.9886580  214183.84          9
## 14    QUETZAL    8.8   205.0       12 12.6105806   42025.00        144
## 15   PROMOTOR    6.0   162.4        3  0.5921909   26373.76          9
## 16   CITIBANK    5.9    45.8        1 27.0305994    2097.64          1
## 17     CONTI.    3.6   113.7        4  0.9057766   12927.69         16
## 18 REFORMADOR    1.7   237.3        7 67.8122736   56311.29         49
## 19        UNO    1.0   170.8        5 33.4487551   29172.64         25
##         AA
## 1  24945.0
## 2  21672.0
## 3  23070.0
## 4  12490.0
## 5  13998.0
## 6   6267.6
## 7   4519.2
## 8   8626.0
## 9   2822.0
## 10  4053.4
## 11  1991.5
## 12  2712.0
## 13  1388.4
## 14  2460.0
## 15   487.2
## 16    45.8
## 17   454.8
## 18  1661.1
## 19   854.0
# Regresion auxiliar en p. 61
regaux <- lm(Banks$residsq ~ Banks$Activos + Banks$Activossq + Banks$Agencias +  Banks$Agenciassq + Banks$AA, data=Banks)
summary(regaux)
## 
## Call:
## lm(formula = Banks$residsq ~ Banks$Activos + Banks$Activossq + 
##     Banks$Agencias + Banks$Agenciassq + Banks$AA, data = Banks)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -21.330 -14.991  -1.961   6.415  49.753 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)       2.675e+01  1.741e+01   1.537    0.148
## Banks$Activos    -2.536e-02  8.569e-02  -0.296    0.772
## Banks$Activossq  -8.487e-05  8.264e-05  -1.027    0.323
## Banks$Agencias   -1.094e+00  2.645e+00  -0.413    0.686
## Banks$Agenciassq -6.643e-02  1.011e-01  -0.657    0.523
## Banks$AA          7.835e-03  5.096e-03   1.538    0.148
## 
## Residual standard error: 21.38 on 13 degrees of freedom
## Multiple R-squared:  0.211,  Adjusted R-squared:  -0.09243 
## F-statistic: 0.6954 on 5 and 13 DF,  p-value: 0.6362

\(R_a^2 * n = 4.0094\)

Grados de libertad = 5

Error = 5 %

Valor critico = 11.7

Ya que 4.0094 < 11.7, no existe heteroscedasticidad.