library(rpart)                     # R package for decision Tree
library(caret)                     # R package for decision Tree
## Loading required package: lattice
## Loading required package: ggplot2
setwd("D:/Users/gkokate/Desktop/Markdown")
build <- read.csv(file = "Build .csv",sep = ",", header = TRUE)
test1 <- read.csv(file = "test.csv", sep = "," , header = TRUE)
# Sample observations 
head(build)
##   gponOntAniOpInfoOpticalSignalLevel gponOntAniOpInfoTxOpticalSignalLevel
## 1                              -7711                                 1142
## 2                              -7703                                 1288
## 3                              -7703                                 1081
## 4                              -7703                                 1207
## 5                              -7688                                 1276
## 6                              -7688                                 1282
##   gponOntOltsideOpInfoRxOpticalSignalLevel X15MinDnFwdByteCounter
## 1                                     -171               8.888281
## 2                                     -170               9.544178
## 3                                     -170               8.915710
## 4                                     -171               7.555582
## 5                                     -170               7.475159
## 6                                     -169               7.236687
##   X15MinUpFwdByteCounter bponOntOpInfoDistance ifOperStatus
## 1               7.245204                    38           up
## 2               7.764763                    38           up
## 3               7.648214                    38           up
## 4               6.976296                    38           up
## 5               6.646812                    38           up
## 6               6.449259                    38           up
#dependent variable as a factor (categorical)
build$ifOperStatus <- as.factor(build$ifOperStatus)
# Split data into training (70%) and validation (30%)
split <- sample(nrow(build),floor(nrow(build)*0.7))
train <- build[split,]
val <- build[-split,]
# Decision Tree Model
mtree  <- rpart(ifOperStatus~ .,data=train,method = "class",parms = list(prior = c(0.3, 0.7)))
#parms = list(prior = c(0.5, 0.5)
#Confusion matrix
rpartpred <- predict(mtree,val,type="class")
confusionMatrix(rpartpred,val$ifOperStatus)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction down   up
##       down  185  112
##       up     77 4190
##                                           
##                Accuracy : 0.9586          
##                  95% CI : (0.9524, 0.9642)
##     No Information Rate : 0.9426          
##     P-Value [Acc > NIR] : 6.789e-07       
##                                           
##                   Kappa : 0.6399          
##  Mcnemar's Test P-Value : 0.01339         
##                                           
##             Sensitivity : 0.70611         
##             Specificity : 0.97397         
##          Pos Pred Value : 0.62290         
##          Neg Pred Value : 0.98195         
##              Prevalence : 0.05741         
##          Detection Rate : 0.04053         
##    Detection Prevalence : 0.06507         
##       Balanced Accuracy : 0.84004         
##                                           
##        'Positive' Class : down            
## 
#Plot tree
#plot(mtree)
#Lable on Decision Tree
#text(mtree)
library(rattle)
## Rattle: A free graphical interface for data mining with R.
## Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
library(RColorBrewer)
#plot 
#prp(mtree, faclen = 0, cex = 0.8, extra = 1)
tot_count <- function(x, labs, digits, varlen)
{paste(labs, "\n\nn =", x$frame$n)}
# Decision Tree
prp(mtree, faclen = 0, cex = 0.8, node.fun=tot_count)

printcp(mtree)
## 
## Classification tree:
## rpart(formula = ifOperStatus ~ ., data = train, method = "class", 
##     parms = list(prior = c(0.3, 0.7)))
## 
## Variables actually used in tree construction:
## [1] gponOntOltsideOpInfoRxOpticalSignalLevel
## 
## Root node error: 3194.4/10648 = 0.3
## 
## n= 10648 
## 
##       CP nsplit rel error xerror     xstd
## 1 0.6231      0    1.0000 1.0000 0.037428
## 2 0.0100      1    0.3769 0.3769 0.021519
bestcp <- mtree$cptable[which.min(mtree$cptable[,"xerror"]),"CP"]
#Pruning & classification matrix of Pruning
pruned <- prune(mtree, cp = bestcp)
#prp(pruned, faclen = 0, cex = 0.8, extra = 1)
predictions <- predict(pruned, val, type="class")
confusionMatrix(predictions,val$ifOperStatus)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction down   up
##       down  185  112
##       up     77 4190
##                                           
##                Accuracy : 0.9586          
##                  95% CI : (0.9524, 0.9642)
##     No Information Rate : 0.9426          
##     P-Value [Acc > NIR] : 6.789e-07       
##                                           
##                   Kappa : 0.6399          
##  Mcnemar's Test P-Value : 0.01339         
##                                           
##             Sensitivity : 0.70611         
##             Specificity : 0.97397         
##          Pos Pred Value : 0.62290         
##          Neg Pred Value : 0.98195         
##              Prevalence : 0.05741         
##          Detection Rate : 0.04053         
##    Detection Prevalence : 0.06507         
##       Balanced Accuracy : 0.84004         
##                                           
##        'Positive' Class : down            
## 
#Scoring 
library(ROCR)
## Loading required package: gplots
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
val1 = predict(pruned, val, type = "prob")
pred_val <-prediction(val1[,2],val$ifOperStatus)
perf_val <- performance(pred_val,"auc")
perf_val
## An object of class "performance"
## Slot "x.name":
## [1] "None"
## 
## Slot "y.name":
## [1] "Area under the ROC curve"
## 
## Slot "alpha.name":
## [1] "none"
## 
## Slot "x.values":
## list()
## 
## Slot "y.values":
## [[1]]
## [1] 0.8400362
## 
## 
## Slot "alpha.values":
## list()
plot(performance(pred_val, measure="lift", x.measure="rpp"), colorize=TRUE)

# Calculating True Positive and False Positive Rate
perf_val <- performance(pred_val, "tpr", "fpr")
#Plot the ROC curve
plot(perf_val, col = "green", lwd = 1.5)

#Calculating KS statistics
ks1.tree <- max(attr(perf_val, "y.values")[[1]] - (attr(perf_val, "x.values")[[1]]))
ks1.tree
## [1] 0.6800725
# Cross Validation Method1
library(ROSE)
## Loaded ROSE 0.0-3
ROSE.BOOT <- ROSE.eval(ifOperStatus ~ ., data = train, learner = rpart,method.assess = "BOOT", extr.pred = function(obj)obj[,2], seed = 1)
# Cross Validation Method2
library(caret)
tc <- trainControl("cv",10)
rpart.grid <- expand.grid(.cp=0.2)
(train.rpart <- train(ifOperStatus ~., data= train, method="rpart",trControl=tc,tuneGrid=rpart.grid))
## CART 
## 
## 10648 samples
##     6 predictor
##     2 classes: 'down', 'up' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 9583, 9583, 9583, 9583, 9584, 9583, ... 
## Resampling results
## 
##   Accuracy   Kappa      Accuracy SD  Kappa SD  
##   0.9529486  0.6249707  0.008441247  0.05945686
## 
## Tuning parameter 'cp' was held constant at a value of 0.2
## 
# Model Perfomance on test data
ptest <- predict(mtree, test1)
answers <- as.vector(ptest)
pml_write_files = function(x) {
    n = length(x)
    for (i in 1:n) {
        filename = paste0("problem_id_", i, ".txt")
        write.table(x[i], file = filename, quote = FALSE, row.names = FALSE, 
            col.names = FALSE)
    }
}
pml_write_files(answers)
# Prediction of probabilites new data
ptest
##         down       up
## 1   0.119708 0.880292
## 2   0.119708 0.880292
## 3   0.119708 0.880292
## 4   0.119708 0.880292
## 5   0.119708 0.880292
## 6   0.119708 0.880292
## 7   0.119708 0.880292
## 8   0.119708 0.880292
## 9   0.119708 0.880292
## 10  0.119708 0.880292
## 11  0.119708 0.880292
## 12  0.119708 0.880292
## 13  0.119708 0.880292
## 14  0.119708 0.880292
## 15  0.119708 0.880292
## 16  0.119708 0.880292
## 17  0.119708 0.880292
## 18  0.119708 0.880292
## 19  0.119708 0.880292
## 20  0.119708 0.880292
## 21  0.119708 0.880292
## 22  0.119708 0.880292
## 23  0.119708 0.880292
## 24  0.119708 0.880292
## 25  0.119708 0.880292
## 26  0.119708 0.880292
## 27  0.119708 0.880292
## 28  0.119708 0.880292
## 29  0.119708 0.880292
## 30  0.119708 0.880292
## 31  0.119708 0.880292
## 32  0.119708 0.880292
## 33  0.119708 0.880292
## 34  0.119708 0.880292
## 35  0.119708 0.880292
## 36  0.119708 0.880292
## 37  0.119708 0.880292
## 38  0.119708 0.880292
## 39  0.119708 0.880292
## 40  0.119708 0.880292
## 41  0.119708 0.880292
## 42  0.119708 0.880292
## 43  0.119708 0.880292
## 44  0.119708 0.880292
## 45  0.119708 0.880292
## 46  0.119708 0.880292
## 47  0.119708 0.880292
## 48  0.119708 0.880292
## 49  0.119708 0.880292
## 50  0.119708 0.880292
## 51  0.119708 0.880292
## 52  0.119708 0.880292
## 53  0.119708 0.880292
## 54  0.119708 0.880292
## 55  0.119708 0.880292
## 56  0.119708 0.880292
## 57  0.119708 0.880292
## 58  0.119708 0.880292
## 59  0.119708 0.880292
## 60  0.119708 0.880292
## 61  0.119708 0.880292
## 62  0.119708 0.880292
## 63  0.119708 0.880292
## 64  0.119708 0.880292
## 65  0.119708 0.880292
## 66  0.119708 0.880292
## 67  0.119708 0.880292
## 68  0.119708 0.880292
## 69  0.119708 0.880292
## 70  0.119708 0.880292
## 71  0.119708 0.880292
## 72  0.119708 0.880292
## 73  0.119708 0.880292
## 74  0.119708 0.880292
## 75  0.119708 0.880292
## 76  0.119708 0.880292
## 77  0.119708 0.880292
## 78  0.119708 0.880292
## 79  0.119708 0.880292
## 80  0.119708 0.880292
## 81  0.119708 0.880292
## 82  0.119708 0.880292
## 83  0.119708 0.880292
## 84  0.119708 0.880292
## 85  0.119708 0.880292
## 86  0.119708 0.880292
## 87  0.119708 0.880292
## 88  0.119708 0.880292
## 89  0.119708 0.880292
## 90  0.119708 0.880292
## 91  0.119708 0.880292
## 92  0.119708 0.880292
## 93  0.119708 0.880292
## 94  0.119708 0.880292
## 95  0.119708 0.880292
## 96  0.119708 0.880292
## 97  0.119708 0.880292
## 98  0.119708 0.880292
## 99  0.119708 0.880292
## 100 0.119708 0.880292
## 101 0.119708 0.880292
## 102 0.119708 0.880292
## 103 0.119708 0.880292
## 104 0.119708 0.880292
## 105 0.119708 0.880292
## 106 0.119708 0.880292
## 107 0.119708 0.880292
## 108 0.119708 0.880292
## 109 0.119708 0.880292
## 110 0.119708 0.880292
## 111 0.119708 0.880292
## 112 0.119708 0.880292
## 113 0.119708 0.880292
## 114 0.119708 0.880292
## 115 0.119708 0.880292
## 116 0.119708 0.880292
## 117 0.119708 0.880292
## 118 0.119708 0.880292
## 119 0.119708 0.880292
## 120 0.119708 0.880292