La multicolinealidad debe considerarse un problema si la R cuadrada de Xi contra las demas Xs es mayor a la R cuadrada de la gregresion.
reg <- lm(mtcars$mpg ~ mtcars$am + mtcars$wt + mtcars$hp, data=mtcars)
summary(reg)
##
## Call:
## lm(formula = mtcars$mpg ~ mtcars$am + mtcars$wt + mtcars$hp,
## data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4221 -1.7924 -0.3788 1.2249 5.5317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.002875 2.642659 12.867 2.82e-13 ***
## mtcars$am 2.083710 1.376420 1.514 0.141268
## mtcars$wt -2.878575 0.904971 -3.181 0.003574 **
## mtcars$hp -0.037479 0.009605 -3.902 0.000546 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.538 on 28 degrees of freedom
## Multiple R-squared: 0.8399, Adjusted R-squared: 0.8227
## F-statistic: 48.96 on 3 and 28 DF, p-value: 2.908e-11
regx1 <- lm(mtcars$am ~ mtcars$wt + mtcars$hp, data=mtcars)
summary(regx1)
##
## Call:
## lm(formula = mtcars$am ~ mtcars$wt + mtcars$hp, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6309 -0.2562 -0.1099 0.3039 0.5301
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.547430 0.211046 7.332 4.46e-08 ***
## mtcars$wt -0.479556 0.083523 -5.742 3.24e-06 ***
## mtcars$hp 0.002738 0.001192 2.297 0.029 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3423 on 29 degrees of freedom
## Multiple R-squared: 0.5597, Adjusted R-squared: 0.5293
## F-statistic: 18.43 on 2 and 29 DF, p-value: 6.833e-06
regx2 <- lm(mtcars$wt ~ mtcars$am + mtcars$hp, data=mtcars)
summary(regx2)
##
## Call:
## lm(formula = mtcars$wt ~ mtcars$am + mtcars$hp, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.83338 -0.24390 -0.05175 0.15592 1.24801
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.576956 0.255062 10.103 5.22e-11 ***
## mtcars$am -1.109360 0.193215 -5.742 3.24e-06 ***
## mtcars$hp 0.007437 0.001406 5.289 1.14e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5207 on 29 degrees of freedom
## Multiple R-squared: 0.7351, Adjusted R-squared: 0.7168
## F-statistic: 40.24 on 2 and 29 DF, p-value: 4.315e-09
regx3 <- lm(mtcars$hp ~ mtcars$am + mtcars$wt, data=mtcars)
summary(regx3)
##
## Call:
## lm(formula = mtcars$hp ~ mtcars$am + mtcars$wt, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -60.05 -31.56 -15.55 22.43 131.64
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -88.55 48.37 -1.831 0.0775 .
## mtcars$am 56.23 24.48 2.297 0.0290 *
## mtcars$wt 66.02 12.48 5.289 1.14e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 49.06 on 29 degrees of freedom
## Multiple R-squared: 0.5211, Adjusted R-squared: 0.4881
## F-statistic: 15.78 on 2 and 29 DF, p-value: 2.31e-05
Multicolinealidad no es un problema en la regresion original.