股票的波动程度可以用来衡量投资的风险。取同一年11月和12月的前10个交易日的股票样本数据如下:
11月:1149,1169,1152,1183,1173,1169,1130,1152,1120,1171;
12月:1116,1147,1135,1125,1184,1125,1192,1174,1164,1180.
问:这两段时间的股票指数的波动程度是否一样(α=0.05)?
H0:波动程度一样
Ha:波动程度不一样
α=0.05
N <- c(1149, 1169, 1152, 1183, 1173, 1169, 1130, 1152, 1120, 1171)
D <- c(1116, 1147, 1135, 1125, 1184, 1125, 1192, 1174, 1164, 1180)
wilcox.test(N, D, paired = F)
## Warning: cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: N and D
## W = 51, p-value = 0.9698
## alternative hypothesis: true location shift is not equal to 0
data <- data.frame(N, D)
data.frame(N, rank(data$N), D, rank(data$D))
## N rank.data.N. D rank.data.D.
## 1 1149 3.0 1116 1.0
## 2 1169 6.5 1147 5.0
## 3 1152 4.5 1135 4.0
## 4 1183 10.0 1125 2.5
## 5 1173 9.0 1184 9.0
## 6 1169 6.5 1125 2.5
## 7 1130 2.0 1192 10.0
## 8 1152 4.5 1174 7.0
## 9 1120 1.0 1164 6.0
## 10 1171 8.0 1180 8.0
P值=0.9698>0.05,因而无法拒绝原假设,认为两个时间段的股票指数的波动程度是一样的。