library(tseries)
## Warning: package 'tseries' was built under R version 3.2.4
library(vars)
## Warning: package 'vars' was built under R version 3.2.4
## Loading required package: MASS
## Warning: package 'MASS' was built under R version 3.2.3
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 3.2.3
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 3.2.3
## Loading required package: urca
## Warning: package 'urca' was built under R version 3.2.3
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 3.2.3
library(MTS)
## Warning: package 'MTS' was built under R version 3.2.4
## 
## Attaching package: 'MTS'
## The following object is masked from 'package:vars':
## 
##     VAR
library(stats)
library(forecast)
## Warning: package 'forecast' was built under R version 3.2.3
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 3.2.3
## This is forecast 6.2
library(fGarch)
## Warning: package 'fGarch' was built under R version 3.2.4
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.2.4
## 
## Attaching package: 'timeSeries'
## The following object is masked from 'package:zoo':
## 
##     time<-
## Loading required package: fBasics
## Warning: package 'fBasics' was built under R version 3.2.4
## 
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
library(Metrics)
## Warning: package 'Metrics' was built under R version 3.2.3
VolatilityPfizer <- read.csv("~/catedraeconometria/VolatilityPfizer.csv")
View(VolatilityPfizer)
attach(VolatilityPfizer)
plot(LN.Returns, type = "l")#Total Volatility of the sample

LN.Returns2<-c(LN.Returns[2:632])
LN.Returns3<-c(LN.Returns[632:1263])
plot(LN.Returns2, type ="l")
sd(LN.Returns2)
## [1] 0.01177139
abline(h=sd(LN.Returns2), col= "red")
ARCH1 <-garch(LN.Returns2, order = c(0,1))
## 
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 
## 
## 
##      I     INITIAL X(I)        D(I)
## 
##      1     1.316374e-04     1.000e+00
##      2     5.000000e-02     1.000e+00
## 
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1 -2.490e+03
##      1    8 -2.490e+03  3.83e-05  7.17e-05  3.2e-05  1.7e+10  3.2e-06  6.26e+05
##      2    9 -2.490e+03  1.76e-07  1.82e-07  3.2e-05  2.0e+00  3.2e-06  6.89e-01
##      3   17 -2.491e+03  4.79e-04  8.41e-04  2.6e-01  2.0e+00  3.6e-02  6.88e-01
##      4   18 -2.491e+03  4.45e-05  3.25e-05  6.0e-02  0.0e+00  1.1e-02  3.25e-05
##      5   19 -2.491e+03  9.38e-06  8.23e-06  3.6e-02  0.0e+00  7.2e-03  8.23e-06
##      6   20 -2.491e+03  2.60e-07  2.43e-07  6.4e-03  0.0e+00  1.3e-03  2.43e-07
##      7   21 -2.491e+03  1.46e-09  1.44e-09  5.1e-04  0.0e+00  1.1e-04  1.44e-09
##      8   22 -2.491e+03  2.49e-13  2.50e-13  6.3e-06  0.0e+00  1.3e-06  2.50e-13
## 
##  ***** RELATIVE FUNCTION CONVERGENCE *****
## 
##  FUNCTION    -2.491086e+03   RELDX        6.258e-06
##  FUNC. EVALS      22         GRAD. EVALS       9
##  PRELDF       2.498e-13      NPRELDF      2.498e-13
## 
##      I      FINAL X(I)        D(I)          G(I)
## 
##      1    1.228968e-04     1.000e+00     6.165e-02
##      2    1.055117e-01     1.000e+00     2.662e-06
summary(ARCH1)
## 
## Call:
## garch(x = LN.Returns2, order = c(0, 1))
## 
## Model:
## GARCH(0,1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -4.28446 -0.47859  0.03236  0.59481  3.07600 
## 
## Coefficient(s):
##     Estimate  Std. Error  t value Pr(>|t|)    
## a0 1.229e-04   5.822e-06   21.109  < 2e-16 ***
## a1 1.055e-01   3.136e-02    3.364 0.000768 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Diagnostic Tests:
##  Jarque Bera Test
## 
## data:  Residuals
## X-squared = 141.78, df = 2, p-value < 2.2e-16
## 
## 
##  Box-Ljung test
## 
## data:  Squared.Residuals
## X-squared = 0.0076406, df = 1, p-value = 0.9303
OutofSampleEstimate <-garch(LN.Returns3,model=ARCH1)
## 
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 
## 
## 
##      I     INITIAL X(I)        D(I)
## 
##      1     1.214574e-04     1.000e+00
##      2     5.000000e-02     1.000e+00
##      3     5.000000e-02     1.000e+00
## 
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1 -2.504e+03
##      1    7 -2.504e+03  8.33e-06  3.95e-04  1.0e-04  9.9e+09  1.0e-05  1.95e+06
##      2    8 -2.504e+03  9.78e-05  1.09e-04  5.0e-05  2.0e+00  5.0e-06  3.09e+00
##      3    9 -2.504e+03  4.77e-07  4.55e-07  5.0e-05  2.0e+00  5.0e-06  3.10e+00
##      4   17 -2.511e+03  2.78e-03  4.07e-03  4.5e-01  2.0e+00  8.2e-02  3.10e+00
##      5   20 -2.520e+03  3.69e-03  3.51e-03  7.4e-01  1.8e+00  3.3e-01  1.47e-01
##      6   22 -2.523e+03  1.11e-03  1.04e-03  7.9e-02  2.0e+00  6.6e-02  2.61e-01
##      7   24 -2.526e+03  1.14e-03  3.12e-03  2.3e-01  2.0e+00  2.6e-01  3.59e-01
##      8   33 -2.527e+03  2.65e-04  1.09e-03  2.5e-06  3.8e+00  3.6e-06  2.04e-03
##      9   34 -2.527e+03  1.15e-04  9.37e-05  2.4e-06  2.0e+00  3.6e-06  8.33e-04
##     10   35 -2.527e+03  4.02e-06  4.19e-06  2.4e-06  2.0e+00  3.6e-06  5.05e-04
##     11   36 -2.527e+03  5.25e-08  8.09e-08  2.5e-06  2.0e+00  3.6e-06  5.20e-04
##     12   44 -2.527e+03  1.86e-04  2.81e-04  2.5e-02  8.5e-01  3.5e-02  5.20e-04
##     13   45 -2.528e+03  1.89e-04  1.09e-04  1.7e-02  0.0e+00  3.2e-02  1.09e-04
##     14   46 -2.528e+03  2.01e-04  2.81e-04  6.6e-02  1.4e-01  1.2e-01  2.85e-04
##     15   47 -2.529e+03  8.67e-05  1.30e-04  8.8e-03  0.0e+00  1.4e-02  1.30e-04
##     16   48 -2.529e+03  1.51e-05  1.50e-05  7.0e-03  0.0e+00  1.3e-02  1.50e-05
##     17   49 -2.529e+03  9.06e-07  3.15e-06  1.9e-03  0.0e+00  3.4e-03  3.15e-06
##     18   50 -2.529e+03  9.15e-07  5.89e-07  1.7e-03  0.0e+00  2.7e-03  5.89e-07
##     19   52 -2.529e+03  1.24e-08  2.40e-08  1.5e-04  1.4e+00  2.8e-04  3.08e-08
##     20   55 -2.529e+03  3.72e-10  7.79e-11  1.8e-06  2.0e+00  3.2e-06  3.23e-09
##     21   58 -2.529e+03  1.20e-12  5.95e-13  1.9e-08  2.0e+00  3.4e-08  3.23e-09
##     22   60 -2.529e+03  1.14e-12  1.53e-13  4.8e-09  2.0e+00  8.9e-09  3.21e-09
##     23   67 -2.529e+03 -2.82e-14  5.95e-18  1.1e-14  6.6e+01  1.8e-14  3.23e-09
## 
##  ***** FALSE CONVERGENCE *****
## 
##  FUNCTION    -2.528565e+03   RELDX        1.101e-14
##  FUNC. EVALS      67         GRAD. EVALS      23
##  PRELDF       5.947e-18      NPRELDF      3.227e-09
## 
##      I      FINAL X(I)        D(I)          G(I)
## 
##      1    9.382703e-06     1.000e+00    -8.538e-01
##      2    1.303874e-01     1.000e+00    -8.065e-03
##      3    8.040497e-01     1.000e+00     4.526e-02
ht.arch01=ARCH1$fit[,1]^2
lines(ht.arch01, col="red")

plot(ht.arch01, type ="l", col="red")

ht.arch01OUT= OutofSampleEstimate$fit[,1]^2
plot(ht.arch01OUT, type = "l")

#GARCH
GARCH11<-garchFit(formula = ~garch(1,1), data=window(LN.Returns2))
## 
## Series Initialization:
##  ARMA Model:                arma
##  Formula Mean:              ~ arma(0, 0)
##  GARCH Model:               garch
##  Formula Variance:          ~ garch(1, 1)
##  ARMA Order:                0 0
##  Max ARMA Order:            0
##  GARCH Order:               1 1
##  Max GARCH Order:           1
##  Maximum Order:             1
##  Conditional Dist:          norm
##  h.start:                   2
##  llh.start:                 1
##  Length of Series:          631
##  Recursion Init:            mci
##  Series Scale:              0.01177139
## 
## Parameter Initialization:
##  Initial Parameters:          $params
##  Limits of Transformations:   $U, $V
##  Which Parameters are Fixed?  $includes
##  Parameter Matrix:
##                      U           V     params includes
##     mu     -0.47489747   0.4748975 0.04748975     TRUE
##     omega   0.00000100 100.0000000 0.10000000     TRUE
##     alpha1  0.00000001   1.0000000 0.10000000     TRUE
##     gamma1 -0.99999999   1.0000000 0.10000000    FALSE
##     beta1   0.00000001   1.0000000 0.80000000     TRUE
##     delta   0.00000000   2.0000000 2.00000000    FALSE
##     skew    0.10000000  10.0000000 1.00000000    FALSE
##     shape   1.00000000  10.0000000 4.00000000    FALSE
##  Index List of Parameters to be Optimized:
##     mu  omega alpha1  beta1 
##      1      2      3      5 
##  Persistence:                  0.9 
## 
## 
## --- START OF TRACE ---
## Selected Algorithm: nlminb 
## 
## R coded nlminb Solver: 
## 
##   0:     850.30503: 0.0474897 0.100000 0.100000 0.800000
##   1:     850.02841: 0.0474912 0.0876166 0.0978678 0.796098
##   2:     848.91841: 0.0474941 0.0849835 0.106479 0.805692
##   3:     847.92784: 0.0475034 0.0628228 0.109231 0.819612
##   4:     846.61737: 0.0475171 0.0567852 0.101684 0.844086
##   5:     844.47437: 0.0475517 0.0328066 0.0709751 0.888865
##   6:     844.25417: 0.0475521 0.0340894 0.0723589 0.890560
##   7:     844.16128: 0.0475545 0.0317976 0.0723550 0.891646
##   8:     844.01650: 0.0475623 0.0297069 0.0727926 0.896245
##   9:     843.89092: 0.0475762 0.0264970 0.0707200 0.899570
##  10:     843.78866: 0.0475998 0.0254649 0.0686796 0.904072
##  11:     843.72970: 0.0476485 0.0234816 0.0658921 0.907675
##  12:     843.69976: 0.0478148 0.0216264 0.0665558 0.910772
##  13:     843.67063: 0.0480115 0.0216399 0.0640117 0.912223
##  14:     843.66644: 0.0482485 0.0213342 0.0638922 0.913079
##  15:     843.66257: 0.0484872 0.0206984 0.0641191 0.913177
##  16:     843.64446: 0.0503190 0.0211587 0.0628132 0.913573
##  17:     843.63049: 0.0521515 0.0210274 0.0629332 0.914391
##  18:     843.61218: 0.0539843 0.0205310 0.0627424 0.914595
##  19:     843.59465: 0.0588129 0.0203514 0.0630731 0.914774
##  20:     843.59351: 0.0594662 0.0199967 0.0624720 0.915677
##  21:     843.59252: 0.0607768 0.0202466 0.0626675 0.915090
##  22:     843.59249: 0.0606142 0.0202089 0.0626408 0.915180
##  23:     843.59249: 0.0606133 0.0202082 0.0626401 0.915181
## 
## Final Estimate of the Negative LLH:
##  LLH:  -1959.362    norm LLH:  -3.10517 
##           mu        omega       alpha1        beta1 
## 7.135028e-04 2.800164e-06 6.264006e-02 9.151812e-01 
## 
## R-optimhess Difference Approximated Hessian Matrix:
##                   mu         omega        alpha1         beta1
## mu     -6.242649e+06 -1.426562e+08  1.376111e+03 -8.621969e+03
## omega  -1.426562e+08 -4.466928e+12 -3.424900e+08 -4.419837e+08
## alpha1  1.376111e+03 -3.424900e+08 -3.831231e+04 -4.116667e+04
## beta1  -8.621969e+03 -4.419837e+08 -4.116667e+04 -5.020593e+04
## attr(,"time")
## Time difference of 0.124012 secs
## 
## --- END OF TRACE ---
## 
## 
## Time to Estimate Parameters:
##  Time difference of 0.2240131 secs
summary(GARCH11)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = window(LN.Returns2)) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x000000000bf699a8>
##  [data = window(LN.Returns2)]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##         mu       omega      alpha1       beta1  
## 7.1350e-04  2.8002e-06  6.2640e-02  9.1518e-01  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## mu     7.135e-04   4.008e-04    1.780   0.0751 .  
## omega  2.800e-06   1.430e-06    1.958   0.0503 .  
## alpha1 6.264e-02   1.609e-02    3.893  9.9e-05 ***
## beta1  9.152e-01   2.194e-02   41.711  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  1959.362    normalized:  3.10517 
## 
## Description:
##  Mon Apr 11 07:12:30 2016 by user: marcogeovanni 
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value     
##  Jarque-Bera Test   R    Chi^2  57.41037  3.416156e-13
##  Shapiro-Wilk Test  R    W      0.9861067 1.043011e-05
##  Ljung-Box Test     R    Q(10)  12.73282  0.2389964   
##  Ljung-Box Test     R    Q(15)  14.25003  0.5066571   
##  Ljung-Box Test     R    Q(20)  15.69082  0.7356102   
##  Ljung-Box Test     R^2  Q(10)  6.675493  0.755684    
##  Ljung-Box Test     R^2  Q(15)  9.639507  0.8417825   
##  Ljung-Box Test     R^2  Q(20)  25.29698  0.1903048   
##  LM Arch Test       R    TR^2   7.463703  0.8255125   
## 
## Information Criterion Statistics:
##       AIC       BIC       SIC      HQIC 
## -6.197661 -6.169469 -6.197741 -6.186711
predict(GARCH11)
##    meanForecast   meanError standardDeviation
## 1  0.0007135028 0.008433654       0.008433654
## 2  0.0007135028 0.008505832       0.008505832
## 3  0.0007135028 0.008575823       0.008575823
## 4  0.0007135028 0.008643713       0.008643713
## 5  0.0007135028 0.008709586       0.008709586
## 6  0.0007135028 0.008773519       0.008773519
## 7  0.0007135028 0.008835588       0.008835588
## 8  0.0007135028 0.008895860       0.008895860
## 9  0.0007135028 0.008954404       0.008954404
## 10 0.0007135028 0.009011282       0.009011282