Data Science(part IV)

Statistical Inference

导论

概率

期望

方差

独立性

条件概率

贝叶斯定理

\[ P(B ~|~ A) = \frac{P(A ~|~ B) P(B)}{P(A ~|~ B) P(B) + P(A ~|~ B^c)P(B^c)}. \]

示意图

常见分布

渐进

T 置信区间

似然函数

贝叶斯推断

两独立样本t检验

假设检验

Truth Decide Result
\( H_0 \) \( H_0 \) Correctly accept null
\( H_0 \) \( H_a \) Type I error
\( H_a \) \( H_a \) Correctly reject null
\( H_a \) \( H_0 \) Type II error

P 值

功效

sigma <- 10
mu_0 = 0
mu_a = 2
n <- 100
alpha = 0.05
plot(c(-3, 6), c(0, dnorm(0)), type = "n", frame = F, xlab = "Z value", ylab = "")
xvals <- seq(-3, 6, length = 1000)
lines(xvals, dnorm(xvals), type = "l", lwd = 3)
lines(xvals, dnorm(xvals, mean = sqrt(n) * (mu_a - mu_0)/sigma), lwd = 3)
abline(v = qnorm(1 - alpha))

plot of chunk power

多重比较

重采样推断