Biostatistics 201: Fundamentals of Statistics Problem sets 2

## Settings for RMarkdown http://yihui.name/knitr/options#chunk_options
opts_chunk$set(comment = "", warning = FALSE, message = FALSE, tidy = FALSE, 
    echo = TRUE, fig.width = 7, fig.height = 7)
options(width = 116, scipen = 10)

setwd("~/statistics/bio201/")

References

1. 4.5-4.6

## 4.5
permutation.data <- seq(from = 50, to = 46, by = -1)
permutation.data
[1] 50 49 48 47 46
prod(permutation.data)
[1] 254251200
factorial(50) / factorial(45)
[1] 254251200

## 4.6
prod(permutation.data) / factorial(5)
[1] 2118760
factorial(50) / (factorial(45) * factorial(5))
[1] 2118760

2. 4.25

binom.test(x = 10, n = 10000, p = 50 / 100000)

    Exact binomial test

data:  10 and 10000 
number of successes = 10, number of trials = 10000, p-value = 0.03852
alternative hypothesis: true probability of success is not equal to 0.0005 
95 percent confidence interval:
 0.0004796 0.0018383 
sample estimates:
probability of success 
                 0.001 

poisson.test(x = 10, T = 10000, r = 50 / 100000)

    Exact Poisson test

data:  10 time base: 10000 
number of events = 10, time base = 10000, p-value = 0.03857
alternative hypothesis: true event rate is not equal to 0.0005 
95 percent confidence interval:
 0.0004795 0.0018390 
sample estimates:
event rate 
     0.001 

3. 4.46-4.50

## 4.46
barplot(dbinom(x = 0:20, size = 20, prob = 0.05), names.arg = 0:20)

plot of chunk unnamed-chunk-4

sum(dbinom(x = 3:20, size = 20, prob = 0.05))
[1] 0.07548

## 4.47
barplot(dbinom(x = 0:18, size = 18, prob = 0.1), names.arg = 0:18)

plot of chunk unnamed-chunk-4

sum(dbinom(x = 0:2, size = 18, prob = 0.1))
[1] 0.7338

## 4.48
dbinom(x = 0, size = 20, prob = 0.05) * dbinom(x = 0, size = 20, prob = 0.10)
[1] 0.04358
0.95^20 * 0.90^20
[1] 0.04358

## 4.49
dbinom(x = 1, size = 20, prob = 0.05) * dbinom(x = 0, size = 19, prob = 0.10) +
dbinom(x = 0, size = 20, prob = 0.05) * dbinom(x = 1, size = 20, prob = 0.10)
[1] 0.1478

## 4.50
dbinom(x = 2, size = 20, prob = 0.05) * dbinom(x = 0, size = 18, prob = 0.10) +
dbinom(x = 0, size = 20, prob = 0.05) * dbinom(x = 2, size = 20, prob = 0.10) +
dbinom(x = 1, size = 20, prob = 0.05) * dbinom(x = 1, size = 19, prob = 0.10)
[1] 0.2382

func.4.50 <- function(x) dbinom(x = x, size = 20, prob = 0.05) * dbinom(x = 2 - x, size = 20 - x, prob = 0.10)
sum(func.4.50(0:2))
[1] 0.2382

4. 4.58-4.60

## 4.58
dbinom(x = 3, size = 5, prob = 0.4)
[1] 0.2304

## 4.59
sum(dbinom(x = 3:5, size = 5, prob = 0.4))
[1] 0.3174

## 4.60
dbinom(x = 0, size = 10, prob = 0.40) * dbinom(x = 3, size = 10, prob = 0.55) +
dbinom(x = 1, size = 10, prob = 0.40) * dbinom(x = 2, size = 10, prob = 0.55) +
dbinom(x = 2, size = 10, prob = 0.40) * dbinom(x = 1, size = 10, prob = 0.55) +
dbinom(x = 3, size = 10, prob = 0.40) * dbinom(x = 0, size = 10, prob = 0.55)
[1] 0.00195

func.4.60 <- function(x) dbinom(x = x, size = 10, prob = 0.40) * dbinom(x = 3 - x, size = 10, prob = 0.55)
sum(func.4.60(0:3))
[1] 0.00195

5. 4.71-4.74

## 4.71 X = 5 from below
data.frame(x = 0:10, proportion.covered = cumsum(dpois(x = 0:10, lambda = 2)))
    x proportion.covered
1   0             0.1353
2   1             0.4060
3   2             0.6767
4   3             0.8571
5   4             0.9473
6   5             0.9834
7   6             0.9955
8   7             0.9989
9   8             0.9998
10  9             1.0000
11 10             1.0000

## 4.72 X = 8 from below
data.frame(x = 0:10, proportion.covered = cumsum(dpois(x = 0:10, lambda = 4)))
    x proportion.covered
1   0            0.01832
2   1            0.09158
3   2            0.23810
4   3            0.43347
5   4            0.62884
6   5            0.78513
7   6            0.88933
8   7            0.94887
9   8            0.97864
10  9            0.99187
11 10            0.99716

## 4.73
345 / 365 * dpois(x = 4, lambda = 2) + 20 / 365 * dpois(x = 4, lambda = 4)
[1] 0.09598

## 4.74 X = 5 from below
func.4.74 <- function(x) 345 / 365 * dpois(x = x, lambda = 2) + 20 / 365 * dpois(x = x, lambda = 4)
data.frame(x = 0:10, proportion.covered = cumsum(func.4.74(0:10)))
    x proportion.covered
1   0             0.1289
2   1             0.3888
3   2             0.6526
4   3             0.8339
5   4             0.9299
6   5             0.9726
7   6             0.9897
8   7             0.9962
9   8             0.9986
10  9             0.9995
11 10             0.9998