1.0
( dat12 <- merge(dat1, dat2, by.y = "Patid") )
## Patid AgeGroup Gender VisitNum Diagnosis
## 1 1 2 M 1 Diabetes
## 2 1 2 M 2 Diabetes
## 3 2 3 F 1 Back Pain
## 4 2 3 F 2 Anxiety
## 5 2 3 F 3 Anxiety
## 6 3 4 F 1 Hyperlipidemia
## 7 3 4 F 2 Osteoarthritis
## 8 3 4 F 3 Pneumonia
## 9 4 1 M 1 Asthma
2.1
( primary_diag <- filter(dat12, VisitNum == 1) %>%
group_by(Diagnosis) %>%
summarise(
count = n()
) )
## Source: local data frame [4 x 2]
##
## Diagnosis count
## 1 Asthma 1
## 2 Back Pain 1
## 3 Diabetes 1
## 4 Hyperlipidemia 1
2.2
gender_diag <- distinct(select(dat12,Patid,Diagnosis)) %>%
merge(
dat1[,-2],
by.x = "Patid"
)
table(gender_diag$Gender,gender_diag$Diagnosis)
##
## Anxiety Asthma Back Pain Diabetes Hyperlipidemia Osteoarthritis
## F 1 0 1 0 1 1
## M 0 1 0 1 0 0
##
## Pneumonia
## F 1
## M 0
3.0
( group_by(dat12,Patid) %>%
summarise(
avrg_visits = mean(VisitNum)
) )
## Source: local data frame [4 x 2]
##
## Patid avrg_visits
## 1 1 1.5
## 2 2 2.0
## 3 3 2.0
## 4 4 1.0
4
counts <- table(primary_diag$Diagnosis)/nrow(primary_diag)
barplot(counts, main="Primary Diagnosis",col = c("red","blue","yellow","green"))
