Analysis

Packages needed:

# install.packages ('doBy') install.packages ('ggplot2')
options(width = 320)
rm(list = ls(all = TRUE))
library(doBy)
## Loading required package: survival
## Loading required package: splines
## Loading required package: MASS
library(ggplot2)

file = "WankaLab ExperimentWanka-table.csv"
tx = read.csv(file, header = T, skip = 6)
names(tx)  #check names!!
##  [1] "X.run.number."          "initial.sunlight"       "percent.that.migrates." "water.infraestructure"  "X.step."                "sunlight"               "Population.density"     "UrbanPopulation"        "RuralPopulation"        "JunglePopulation"       "LimaPopulationUrban"    "LimaPopulationRural"   
## [13] "global.temperature"     "num.snow"               "num.ice"                "num.dry"

Effect of different percent that migrates in population density in HYO Table Summary

summaryBy(Population.density ~ percent.that.migrates., data = tx, FUN = function(x) {
    c(mean = mean(x), sd = sd(x), me = median(x))
})
##   percent.that.migrates. Population.density.mean Population.density.sd Population.density.me
## 1                    0.1                  0.2642                0.1242                0.2614
## 2                    0.5                  0.2313                0.1013                0.2451
## 3                    1.0                  0.2126                0.0980                0.2288

Boxplot

DensityPercentMigrateBox <- ggplot(tx, aes(factor(percent.that.migrates.), Population.density))
DensityPercentMigrateBox + geom_boxplot(fill = "yellow", colour = "#3366FF") + xlab("Percentage of Uncomfortable people that migrates") + ylab("Pop Density") + ggtitle("Percent Migrate vs Pop Density")

plot of chunk unnamed-chunk-3

Effect of different infraestructure in population density in HYO Table Summary

summaryBy(Population.density ~ water.infraestructure, data = tx, FUN = function(x) {
    c(mean = mean(x), sd = sd(x), me = median(x))
})
##   water.infraestructure Population.density.mean Population.density.sd Population.density.me
## 1                     1                  0.1150               0.02552                0.1111
## 2                     5                  0.2442               0.04218                0.2516
## 3                    10                  0.3572               0.07332                0.3497

Boxplot

DensityInfrastructureBox <- ggplot(tx, aes(factor(water.infraestructure), Population.density))
DensityInfrastructureBox + geom_boxplot(fill = "yellow", colour = "#3366FF") + xlab("Infrastructure") + ylab("Pop Density") + ggtitle("Infrastructure vs Pop Density")

plot of chunk unnamed-chunk-5

Effect of Initial sunlight in population density in HYO Table Summary

summaryBy(Population.density ~ initial.sunlight, data = tx, FUN = function(x) {
    c(mean = mean(x), sd = sd(x), me = median(x))
})
##   initial.sunlight Population.density.mean Population.density.sd Population.density.me
## 1              0.5                  0.1728                0.1223                0.1422
## 2              1.5                  0.2420                0.1092                0.2516

Boxplot

DensitySunlightBox <- ggplot(tx, aes(factor(initial.sunlight), Population.density))
DensitySunlightBox + geom_boxplot(fill = "yellow", colour = "#3366FF") + xlab("Sunlight") + ylab("Pop Density") + ggtitle("Sunlight vs Pop Density")

plot of chunk unnamed-chunk-7

Combined effects in population density in HYO Table Summary

summaryBy(Population.density ~ water.infraestructure + initial.sunlight, tx, FUN = c(median))
##   water.infraestructure initial.sunlight Population.density.median
## 1                     1              0.5                    0.1373
## 2                     1              1.5                    0.1095
## 3                     5              0.5                    0.1716
## 4                     5              1.5                    0.2533
## 5                    10              0.5                    0.2941
## 6                    10              1.5                    0.3497

Boxplot

DensityInfrastructureBox <- ggplot(tx, aes(factor(water.infraestructure), Population.density))
DensityInfrastructureBox + geom_boxplot(fill = "yellow", colour = "#3366FF") + xlab("Infrastructure") + ylab("Pop Density") + ggtitle("Infrastructure vs Pop Density") + facet_grid(. ~ initial.sunlight)

plot of chunk unnamed-chunk-9

summaryBy(Population.density ~ percent.that.migrates. + initial.sunlight, tx, FUN = c(median))
##   percent.that.migrates. initial.sunlight Population.density.median
## 1                    0.1              0.5                   0.14542
## 2                    0.1              1.5                   0.26471
## 3                    0.5              0.5                   0.09150
## 4                    0.5              1.5                   0.24673
## 5                    1.0              0.5                   0.08333
## 6                    1.0              1.5                   0.22876
DensityPercentMigrateBox <- ggplot(tx, aes(factor(percent.that.migrates.), Population.density))
DensityPercentMigrateBox + geom_boxplot(fill = "yellow", colour = "#3366FF") + xlab("Percentage of Uncomfortable people that migrates") + ylab("Pop Density") + ggtitle("Percent Migrate vs Pop Density") + facet_grid(. ~ initial.sunlight)

plot of chunk unnamed-chunk-11

summaryBy(Population.density ~ percent.that.migrates. + water.infraestructure + initial.sunlight, tx, FUN = c(median))
##    percent.that.migrates. water.infraestructure initial.sunlight Population.density.median
## 1                     0.1                     1              0.5                   0.13725
## 2                     0.1                     1              1.5                   0.13889
## 3                     0.1                     5              0.5                   0.25817
## 4                     0.1                     5              1.5                   0.26634
## 5                     0.1                    10              0.5                   0.35621
## 6                     0.1                    10              1.5                   0.42157
## 7                     0.5                     1              0.5                   0.08824
## 8                     0.5                     1              1.5                   0.10784
## 9                     0.5                     5              0.5                   0.11601
## 10                    0.5                     5              1.5                   0.24837
## 11                    0.5                    10              0.5                   0.05556
## 12                    0.5                    10              1.5                   0.34477
## 13                    1.0                     1              0.5                   0.05065
## 14                    1.0                     1              1.5                   0.09477
## 15                    1.0                     5              0.5                   0.09804
## 16                    1.0                     5              1.5                   0.23039
## 17                    1.0                    10              0.5                   0.16176
## 18                    1.0                    10              1.5                   0.32516
DensityPercentMigrateBox <- ggplot(tx, aes(factor(percent.that.migrates.), Population.density))
DensityPercentMigrateBox + geom_boxplot(fill = "yellow", colour = "#3366FF") + xlab("Percentage of Uncomfortable people that migrates") + ylab("Pop Density") + ggtitle("Percent Migrate vs Pop Density") + facet_grid(water.infraestructure ~ initial.sunlight)

plot of chunk unnamed-chunk-13

summaryBy(X.step. ~ percent.that.migrates. + water.infraestructure + initial.sunlight, tx, FUN = c(max))
##    percent.that.migrates. water.infraestructure initial.sunlight X.step..max
## 1                     0.1                     1              0.5        2000
## 2                     0.1                     1              1.5        2000
## 3                     0.1                     5              0.5        2000
## 4                     0.1                     5              1.5        2000
## 5                     0.1                    10              0.5        2000
## 6                     0.1                    10              1.5        2000
## 7                     0.5                     1              0.5          99
## 8                     0.5                     1              1.5        2000
## 9                     0.5                     5              0.5         123
## 10                    0.5                     5              1.5        2000
## 11                    0.5                    10              0.5          28
## 12                    0.5                    10              1.5        2000
## 13                    1.0                     1              0.5          13
## 14                    1.0                     1              1.5        2000
## 15                    1.0                     5              0.5          60
## 16                    1.0                     5              1.5        2000
## 17                    1.0                    10              0.5          64
## 18                    1.0                    10              1.5        2000

REGRESSION

preparing data

regreData = as.data.frame(summaryBy(X.step. ~ percent.that.migrates. + water.infraestructure + initial.sunlight, tx, FUN = c(max)))

computing model

reglin = lm(X.step..max ~ percent.that.migrates. + water.infraestructure + initial.sunlight, data = regreData)

Verifying which variables hav effect on time until 0 people in HYO

summary(reglin)
## 
## Call:
## lm(formula = X.step..max ~ percent.that.migrates. + water.infraestructure + 
##     initial.sunlight, data = regreData)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -714.2 -451.4  -96.8  486.0  840.7 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              623.21     420.61    1.48  0.16058    
## percent.that.migrates. -1042.79     376.71   -2.77  0.01510 *  
## water.infraestructure     -0.48      37.67   -0.01  0.99002    
## initial.sunlight        1290.33     277.39    4.65  0.00037 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 588 on 14 degrees of freedom
## Multiple R-squared:  0.677,  Adjusted R-squared:  0.607 
## F-statistic: 9.77 on 3 and 14 DF,  p-value: 0.000982