Sharon Cabrera, Marc Ribas, Eloi Rodrigez, David Romero

In this work we have identified the preferences of a dozen people of different ages when they have to choose the perfect partner:

#Conjoint Analysis

library(conjoint)
## Warning: package 'conjoint' was built under R version 3.2.4
#Describe Factors and levels

att <-list(
  ulls=c("clars","foscos"),
  cabell=c("clar","foscos"),
  fisic=c("Alt","Baix","Prim","Gras"),
  caracter=c("Alegre","Seriòs","Nervios","Tranquil"),
  mental=c("mes inteligent que tu","menys inteligent que tu","igual de inteligent que tu"),
  personalitat=c("Divertit","Avorrit","Interessant","Carismatic"),
  vestimenta=c("Hippie","A la Moda","Provocatiu","Elegant"),
  higienePersonal=c("Net","Brut")
  )
#Full factorial design
profiles <- expand.grid(att)

head(profiles)
##     ulls cabell fisic caracter                mental personalitat
## 1  clars   clar   Alt   Alegre mes inteligent que tu     Divertit
## 2 foscos   clar   Alt   Alegre mes inteligent que tu     Divertit
## 3  clars foscos   Alt   Alegre mes inteligent que tu     Divertit
## 4 foscos foscos   Alt   Alegre mes inteligent que tu     Divertit
## 5  clars   clar  Baix   Alegre mes inteligent que tu     Divertit
## 6 foscos   clar  Baix   Alegre mes inteligent que tu     Divertit
##   vestimenta higienePersonal
## 1     Hippie             Net
## 2     Hippie             Net
## 3     Hippie             Net
## 4     Hippie             Net
## 5     Hippie             Net
## 6     Hippie             Net
tail(profiles)
##        ulls cabell fisic caracter                     mental personalitat
## 6139  clars foscos  Prim Tranquil igual de inteligent que tu   Carismatic
## 6140 foscos foscos  Prim Tranquil igual de inteligent que tu   Carismatic
## 6141  clars   clar  Gras Tranquil igual de inteligent que tu   Carismatic
## 6142 foscos   clar  Gras Tranquil igual de inteligent que tu   Carismatic
## 6143  clars foscos  Gras Tranquil igual de inteligent que tu   Carismatic
## 6144 foscos foscos  Gras Tranquil igual de inteligent que tu   Carismatic
##      vestimenta higienePersonal
## 6139    Elegant            Brut
## 6140    Elegant            Brut
## 6141    Elegant            Brut
## 6142    Elegant            Brut
## 6143    Elegant            Brut
## 6144    Elegant            Brut
#Get a better esign
design <- caFactorialDesign(data=profiles,type="fractional",cards=25)#levels
print(design)#scenario
##        ulls cabell fisic caracter                     mental personalitat
## 10   foscos   clar  Prim   Alegre      mes inteligent que tu     Divertit
## 211   clars foscos   Alt   Seriòs      mes inteligent que tu      Avorrit
## 333   clars   clar  Gras   Alegre igual de inteligent que tu      Avorrit
## 740  foscos foscos   Alt  Nervios igual de inteligent que tu   Carismatic
## 884  foscos foscos   Alt Tranquil    menys inteligent que tu     Divertit
## 1366 foscos   clar  Baix   Seriòs      mes inteligent que tu   Carismatic
## 1479  clars foscos  Baix   Alegre igual de inteligent que tu   Carismatic
## 1629  clars   clar  Gras   Seriòs    menys inteligent que tu     Divertit
## 2090 foscos   clar  Prim  Nervios igual de inteligent que tu  Interessant
## 2597  clars   clar  Baix  Nervios    menys inteligent que tu      Avorrit
## 2751  clars foscos  Gras Tranquil      mes inteligent que tu  Interessant
## 2960 foscos foscos  Gras   Alegre    menys inteligent que tu   Carismatic
## 3181  clars   clar  Gras  Nervios    menys inteligent que tu     Divertit
## 3544 foscos foscos  Baix   Seriòs    menys inteligent que tu  Interessant
## 3769  clars   clar  Prim Tranquil    menys inteligent que tu   Carismatic
## 4075  clars foscos  Prim  Nervios      mes inteligent que tu      Avorrit
## 4222 foscos   clar  Gras Tranquil igual de inteligent que tu      Avorrit
## 4289  clars   clar   Alt   Alegre    menys inteligent que tu  Interessant
## 4791  clars foscos  Baix Tranquil igual de inteligent que tu     Divertit
## 4876 foscos foscos  Prim   Alegre    menys inteligent que tu      Avorrit
## 5232 foscos foscos  Gras  Nervios      mes inteligent que tu   Carismatic
## 5233  clars   clar   Alt Tranquil      mes inteligent que tu   Carismatic
## 5382 foscos   clar  Baix   Alegre      mes inteligent que tu     Divertit
## 5531  clars foscos  Prim   Seriòs igual de inteligent que tu     Divertit
## 5714 foscos   clar   Alt   Seriòs igual de inteligent que tu      Avorrit
##      vestimenta higienePersonal
## 10       Hippie             Net
## 211      Hippie             Net
## 333      Hippie             Net
## 740      Hippie             Net
## 884   A la Moda             Net
## 1366  A la Moda             Net
## 1479  A la Moda             Net
## 1629 Provocatiu             Net
## 2090 Provocatiu             Net
## 2597    Elegant             Net
## 2751    Elegant             Net
## 2960    Elegant             Net
## 3181     Hippie            Brut
## 3544     Hippie            Brut
## 3769     Hippie            Brut
## 4075  A la Moda            Brut
## 4222  A la Moda            Brut
## 4289  A la Moda            Brut
## 4791 Provocatiu            Brut
## 4876 Provocatiu            Brut
## 5232 Provocatiu            Brut
## 5233 Provocatiu            Brut
## 5382    Elegant            Brut
## 5531    Elegant            Brut
## 5714    Elegant            Brut
#Get the levels

levels <- c("clars","foscos","clar","foscos","Alt","Baix","Prim","Gras","Alegre","Seriòs","Nervos","Tranquil"
            ,"mes inteligent que tu","menys inteligent que tu","igual de inteligent que tu","Divertit",
            "Avorrit","Interessant","Carismatic","Hippie","A la Moda","Provocatiu","Elegante","Net","Brut")

#Get the preference for each user/customer
pref <- c(1:25)#l'ordre amb les que la triaria 
#Execute Conjoint analysis
#conjoint(matrix of preferences, design matrix, levels matrix)
user1 <- Conjoint(pref,design, levels)
## 
## Call:
## lm(formula = frml)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0,59385 -0,11922  0,06249  0,14023  0,46646 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                12,959288   0,106641 121,523 6,74e-13 ***
## factor(x$ulls)1             0,009025   0,106214   0,085  0,93466    
## factor(x$cabell)1           0,127038   0,104421   1,217  0,26318    
## factor(x$fisic)1            0,650471   0,190215   3,420  0,01114 *  
## factor(x$fisic)2           -0,499930   0,190753  -2,621  0,03437 *  
## factor(x$fisic)3           -0,068833   0,192147  -0,358  0,73073    
## factor(x$caracter)1         0,266097   0,179823   1,480  0,18247    
## factor(x$caracter)2         0,390076   0,190885   2,044  0,08030 .  
## factor(x$caracter)3        -0,338417   0,188082  -1,799  0,11500    
## factor(x$mental)1          -0,335913   0,149007  -2,254  0,05882 .  
## factor(x$mental)2          -0,286194   0,147826  -1,936  0,09408 .  
## factor(x$personalitat)1    -0,698629   0,180208  -3,877  0,00608 ** 
## factor(x$personalitat)2    -0,538893   0,184354  -2,923  0,02224 *  
## factor(x$personalitat)3     0,112261   0,212457   0,528  0,61356    
## factor(x$vestimenta)1      -4,743746   0,178865 -26,521 2,77e-08 ***
## factor(x$vestimenta)2      -1,573496   0,190357  -8,266 7,39e-05 ***
## factor(x$vestimenta)3       1,582699   0,191669   8,257 7,44e-05 ***
## factor(x$higienePersonal)1 -6,064082   0,109167 -55,548 1,61e-10 ***
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
## 
## Residual standard error: 0,513 on 7 degrees of freedom
## Multiple R-squared:  0,9986, Adjusted R-squared:  0,9951 
## F-statistic: 290,2 on 17 and 7 DF,  p-value: 2,597e-08
## [1] "Part worths (utilities) of levels (model parameters for whole sample):"
##                        levnms    utls
## 1                   intercept 12,9593
## 2                       clars   0,009
## 3                      foscos  -0,009
## 4                        clar   0,127
## 5                      foscos  -0,127
## 6                         Alt  0,6505
## 7                        Baix -0,4999
## 8                        Prim -0,0688
## 9                        Gras -0,0817
## 10                     Alegre  0,2661
## 11                     Seriòs  0,3901
## 12                     Nervos -0,3384
## 13                   Tranquil -0,3178
## 14      mes inteligent que tu -0,3359
## 15    menys inteligent que tu -0,2862
## 16 igual de inteligent que tu  0,6221
## 17                   Divertit -0,6986
## 18                    Avorrit -0,5389
## 19                Interessant  0,1123
## 20                 Carismatic  1,1253
## 21                     Hippie -4,7437
## 22                  A la Moda -1,5735
## 23                 Provocatiu  1,5827
## 24                   Elegante  4,7345
## 25                        Net -6,0641
## 26                       Brut  6,0641
## [1] "Average importance of factors (attributes):"
## [1]  0,07  0,96  4,33  2,74  3,61  6,87 35,71 45,70
## [1] Sum of average importance:  99,99
## [1] "Chart of average factors importance"
set.seed(123)
pref2 <-sample(1:25, 25, replace=F)
user2 <- Conjoint(pref2,design, levels)
## 
## Call:
## lm(formula = frml)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3,9175 -1,7522 -0,0615  1,2554  5,5845 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                13,82142    0,98651  14,010 2,23e-06 ***
## factor(x$ulls)1             0,57000    0,98256   0,580  0,58002    
## factor(x$cabell)1           0,06619    0,96597   0,069  0,94729    
## factor(x$fisic)1            7,11971    1,75964   4,046  0,00489 ** 
## factor(x$fisic)2            3,18664    1,76461   1,806  0,11390    
## factor(x$fisic)3           -5,09926    1,77751  -2,869  0,02403 *  
## factor(x$caracter)1         0,24627    1,66350   0,148  0,88648    
## factor(x$caracter)2        -4,16533    1,76583  -2,359  0,05043 .  
## factor(x$caracter)3         4,71855    1,73990   2,712  0,03011 *  
## factor(x$mental)1          -0,31357    1,37843  -0,227  0,82655    
## factor(x$mental)2           0,50042    1,36750   0,366  0,72522    
## factor(x$personalitat)1     2,22902    1,66707   1,337  0,22301    
## factor(x$personalitat)2     0,22683    1,70542   0,133  0,89793    
## factor(x$personalitat)3     4,30347    1,96539   2,190  0,06471 .  
## factor(x$vestimenta)1      -1,62461    1,65464  -0,982  0,35888    
## factor(x$vestimenta)2      -2,52486    1,76095  -1,434  0,19475    
## factor(x$vestimenta)3       2,22362    1,77308   1,254  0,25006    
## factor(x$higienePersonal)1  2,17633    1,00988   2,155  0,06810 .  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
## 
## Residual standard error: 4,745 on 7 degrees of freedom
## Multiple R-squared:  0,8787, Adjusted R-squared:  0,5843 
## F-statistic: 2,984 on 17 and 7 DF,  p-value: 0,07325
## [1] "Part worths (utilities) of levels (model parameters for whole sample):"
##                        levnms    utls
## 1                   intercept 13,8214
## 2                       clars    0,57
## 3                      foscos   -0,57
## 4                        clar  0,0662
## 5                      foscos -0,0662
## 6                         Alt  7,1197
## 7                        Baix  3,1866
## 8                        Prim -5,0993
## 9                        Gras -5,2071
## 10                     Alegre  0,2463
## 11                     Seriòs -4,1653
## 12                     Nervos  4,7185
## 13                   Tranquil -0,7995
## 14      mes inteligent que tu -0,3136
## 15    menys inteligent que tu  0,5004
## 16 igual de inteligent que tu -0,1868
## 17                   Divertit   2,229
## 18                    Avorrit  0,2268
## 19                Interessant  4,3035
## 20                 Carismatic -6,7593
## 21                     Hippie -1,6246
## 22                  A la Moda -2,5249
## 23                 Provocatiu  2,2236
## 24                   Elegante  1,9259
## 25                        Net  2,1763
## 26                       Brut -2,1763
## [1] "Average importance of factors (attributes):"
## [1]  2,62  0,30 28,36 20,44  1,87 25,45 10,93 10,02
## [1] Sum of average importance:  99,99
## [1] "Chart of average factors importance"
preffAll<- cbind(pref,pref2)
userAll<-Conjoint(preffAll,design,levels)
## 
## Call:
## lm(formula = frml)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -12,3858  -3,9036   0,0963   4,2109  11,0654 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 12,9527     0,9845  13,157 1,87e-14 ***
## factor(x$ulls)1              1,9158     0,9805   1,954   0,0595 .  
## factor(x$cabell)1           -0,8018     0,9640  -0,832   0,4117    
## factor(x$fisic)1             2,2043     1,7560   1,255   0,2185    
## factor(x$fisic)2            -0,3676     1,7610  -0,209   0,8360    
## factor(x$fisic)3            -1,3886     1,7738  -0,783   0,4395    
## factor(x$caracter)1          0,5537     1,6601   0,334   0,7409    
## factor(x$caracter)2          2,0822     1,7622   1,182   0,2461    
## factor(x$caracter)3          1,9213     1,7363   1,107   0,2767    
## factor(x$mental)1            0,3040     1,3756   0,221   0,8265    
## factor(x$mental)2            2,0292     1,3647   1,487   0,1468    
## factor(x$personalitat)1     -2,7363     1,6636  -1,645   0,1098    
## factor(x$personalitat)2      1,4596     1,7019   0,858   0,3975    
## factor(x$personalitat)3      0,4150     1,9613   0,212   0,8337    
## factor(x$vestimenta)1       -2,8927     1,6512  -1,752   0,0894 .  
## factor(x$vestimenta)2       -0,8950     1,7573  -0,509   0,6140    
## factor(x$vestimenta)3        3,1643     1,7694   1,788   0,0832 .  
## factor(x$higienePersonal)1  -2,0727     1,0078  -2,057   0,0479 *  
## ---
## Signif. codes:  0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
## 
## Residual standard error: 6,697 on 32 degrees of freedom
## Multiple R-squared:  0,448,  Adjusted R-squared:  0,1547 
## F-statistic: 1,528 on 17 and 32 DF,  p-value: 0,147
## [1] "Part worths (utilities) of levels (model parameters for whole sample):"
##                        levnms    utls
## 1                   intercept 12,9527
## 2                       clars  1,9158
## 3                      foscos -1,9158
## 4                        clar -0,8018
## 5                      foscos  0,8018
## 6                         Alt  2,2043
## 7                        Baix -0,3676
## 8                        Prim -1,3886
## 9                        Gras -0,4481
## 10                     Alegre  0,5537
## 11                     Seriòs  2,0822
## 12                     Nervos  1,9213
## 13                   Tranquil -4,5573
## 14      mes inteligent que tu   0,304
## 15    menys inteligent que tu  2,0292
## 16 igual de inteligent que tu -2,3332
## 17                   Divertit -2,7363
## 18                    Avorrit  1,4596
## 19                Interessant   0,415
## 20                 Carismatic  0,8616
## 21                     Hippie -2,8927
## 22                  A la Moda  -0,895
## 23                 Provocatiu  3,1643
## 24                   Elegante  0,6234
## 25                        Net -2,0727
## 26                       Brut  2,0727
## [1] "Average importance of factors (attributes):"
## [1]  9,34  6,49 13,82 19,52 11,55 13,78 15,24 10,25
## [1] Sum of average importance:  99,99
## [1] "Chart of average factors importance"
caPartUtilities(preffAll,design,levels)
##      intercept clars foscos   clar foscos   Alt   Baix   Prim   Gras
## [1,]    10.735 0.976 -0.976  0.535 -0.535 3.477  1.332 -1.619 -3.189
## [2,]    15.170 2.855 -2.855 -2.139  2.139 0.932 -2.067 -1.158  2.293
##      Alegre Seriòs Nervos Tranquil mes inteligent que tu
## [1,] -0.089  0.463  3.003   -3.378                -0.686
## [2,]  1.196  3.701  0.839   -5.737                 1.294
##      menys inteligent que tu igual de inteligent que tu Divertit Avorrit
## [1,]                   3.233                     -2.547   -2.223   3.204
## [2,]                   0.826                     -2.119   -3.250  -0.284
##      Interessant Carismatic Hippie A la Moda Provocatiu Elegante    Net
## [1,]      -0.293     -0.688 -3.493    -0.378      4.356   -0.485 -1.775
## [2,]       1.123      2.411 -2.292    -1.412      1.973    1.731 -2.371
##       Brut
## [1,] 1.775
## [2,] 2.371

With this script we generate a 25 random statges to survey 12 people of diferent ages:

#Escollim 25 escenaris amb una ordenacio diferent
# If you run this script we would have a similar result to the one below , but as it does not always produce the same , we have worked with the following
for (i in 1:25) print (names(sample(att,8,replace=F)))
## [1] "personalitat"    "caracter"        "vestimenta"      "cabell"         
## [5] "ulls"            "fisic"           "mental"          "higienePersonal"
## [1] "vestimenta"      "ulls"            "fisic"           "caracter"       
## [5] "higienePersonal" "mental"          "personalitat"    "cabell"         
## [1] "caracter"        "fisic"           "vestimenta"      "ulls"           
## [5] "mental"          "higienePersonal" "personalitat"    "cabell"         
## [1] "vestimenta"      "ulls"            "fisic"           "caracter"       
## [5] "higienePersonal" "cabell"          "mental"          "personalitat"   
## [1] "vestimenta"      "higienePersonal" "fisic"           "caracter"       
## [5] "ulls"            "cabell"          "mental"          "personalitat"   
## [1] "caracter"        "personalitat"    "mental"          "higienePersonal"
## [5] "cabell"          "fisic"           "vestimenta"      "ulls"           
## [1] "ulls"            "caracter"        "cabell"          "personalitat"   
## [5] "fisic"           "mental"          "higienePersonal" "vestimenta"     
## [1] "personalitat"    "fisic"           "mental"          "ulls"           
## [5] "cabell"          "vestimenta"      "caracter"        "higienePersonal"
## [1] "cabell"          "ulls"            "caracter"        "higienePersonal"
## [5] "fisic"           "vestimenta"      "personalitat"    "mental"         
## [1] "ulls"            "caracter"        "vestimenta"      "fisic"          
## [5] "cabell"          "personalitat"    "mental"          "higienePersonal"
## [1] "higienePersonal" "vestimenta"      "caracter"        "fisic"          
## [5] "ulls"            "mental"          "personalitat"    "cabell"         
## [1] "higienePersonal" "personalitat"    "ulls"            "fisic"          
## [5] "caracter"        "cabell"          "vestimenta"      "mental"         
## [1] "fisic"           "higienePersonal" "cabell"          "personalitat"   
## [5] "caracter"        "ulls"            "vestimenta"      "mental"         
## [1] "personalitat"    "mental"          "higienePersonal" "caracter"       
## [5] "fisic"           "cabell"          "vestimenta"      "ulls"           
## [1] "vestimenta"      "higienePersonal" "fisic"           "cabell"         
## [5] "mental"          "ulls"            "personalitat"    "caracter"       
## [1] "cabell"          "higienePersonal" "ulls"            "vestimenta"     
## [5] "fisic"           "caracter"        "personalitat"    "mental"         
## [1] "cabell"          "ulls"            "fisic"           "personalitat"   
## [5] "vestimenta"      "higienePersonal" "caracter"        "mental"         
## [1] "fisic"           "mental"          "higienePersonal" "cabell"         
## [5] "personalitat"    "caracter"        "ulls"            "vestimenta"     
## [1] "fisic"           "mental"          "cabell"          "vestimenta"     
## [5] "higienePersonal" "caracter"        "personalitat"    "ulls"           
## [1] "mental"          "vestimenta"      "caracter"        "higienePersonal"
## [5] "cabell"          "fisic"           "ulls"            "personalitat"   
## [1] "caracter"        "cabell"          "higienePersonal" "mental"         
## [5] "personalitat"    "ulls"            "fisic"           "vestimenta"     
## [1] "mental"          "vestimenta"      "fisic"           "personalitat"   
## [5] "higienePersonal" "ulls"            "cabell"          "caracter"       
## [1] "higienePersonal" "mental"          "caracter"        "fisic"          
## [5] "personalitat"    "cabell"          "ulls"            "vestimenta"     
## [1] "cabell"          "caracter"        "higienePersonal" "personalitat"   
## [5] "fisic"           "ulls"            "mental"          "vestimenta"     
## [1] "caracter"        "personalitat"    "vestimenta"      "cabell"         
## [5] "higienePersonal" "fisic"           "mental"          "ulls"

We based ou experiment with this differents statges:

1[1] “vestimenta” “personalitat” “mental” “fisic” “caracter” “cabell” “ulls” “higienePersonal”

2[1] “fisic” “ulls” “personalitat” “cabell” “mental” “caracter” “vestimenta”

[7] “higienePersonal”

3[1] “higienePersonal” “ulls” “caracter” “mental” “personalitat” “fisic”
[7] “cabell” “vestimenta”

4[1] “cabell” “ulls” “vestimenta” “fisic” “caracter” “mental” “personalitat” “higienePersonal”

5[1] “vestimenta” “caracter” “mental” “higienePersonal” “fisic” “personalitat” “cabells”

[7] “ulls”

6[1] “cabell” “ulls” “vestimenta” “mental” “caracter” “personalitat” “fisic” “higienePersonal”

7[1] “cabell” “caracter” “mental” “ulls” “personalitat” “higienePersonal”

[7] “vestimenta” “fisic”

8[1] “caracter” “ulls” “personalitat” “higienePersonal” “cabell” “fisic”

[7] “vestimenta” “mental”

9[1] “personalitat” “fisic” “mental” “vestimenta” “higienePersonal” “ulls”

[7] “cabell” “caracter”

10[1] “mental” “ulls” “fisic” “personalitat” “cabell” “caracter”

[7] “higienePersonal” “vestimenta”

11[1] “vestimenta” “ulls” “higienePersonal” “cabell” “mental” “fisic”

[7] “personalitat” “caracter”

12[1] “higienePersonal” “personalitat” “caracter” “mental” “ulls” “fisic”

[7] “cabell” “vestimenta”

13[1] “ulls” “caracter” “mental” “fisic” “vestimenta” “cabell” “personalitat” “higienePersonal”

14[1] “personalitat” “cabell” “higienePersonal” “ulls” “fisic” “mental” “caracter” “vestimenta”

15[1] “vestimenta” “mental” “cabell” “higienePersonal” “fisic” “caracter” “personalitat” “ulls”

16[1] “caracter” “personalitat” “mental” “vestimenta” “ulls” “higienePersonal” “cabell” “fisic”

17[1] “caracter” “mental” “higienePersonal” “cabell” “fisic” “personalitat” “ulls” “cabell”

18[1] “fisic” “personalitat” “cabell” “caracter” “vestimenta” “mental” “higienePersonal” “ulls”

19[1]“personalitat” “higienePersonal” “fisic” “cabell” “caracter” “mental” “vestimenta” “ulls”

20[1]“vestimenta” “caracter” “fisic” “mental” “personalitat” “cabell” “higienePersonal” “ulls”

21[1]“personalitat” “cabell” “vestimenta” “ulls” “caracter” “mental” “fisic” “higienePersonal”

22[1]“ulls” “personalitat” “fisic” “vestimenta” “caracter” “cabell” “mental” “higienePersonal”

23[1]“vestimenta” “cabell” “ulls” “higienePersonal” “fisic” “caracter” “mental” “personalitat”

24[1]“higienePersonal” “ulls” “fisic” “caracter” “vestimenta” “mental” “personalitat” “cabell”

25[1]“personalitat” “higienePersonal” “cabell” “vestimenta” “ulls” “fisic” “mental”

Each respondent, has to order

The 25 preferences in a range from 25 (most preferred) to 1 (least preferred).

People between 14-25 years

p1<- c(8, 1 , 6 ,  2  ,15 , 22  , 9 , 24  ,18 , 13  , 3 , 16  , 5 , 20  ,23 , 11  , 7 ,  4 , 21 , 10 , 14 , 19 , 12 , 25 , 17)

p2<-c(7 , 11 , 19 , 10 ,  6 , 24 , 12 ,  8 ,  4 , 15 , 16 , 23 , 13 , 17 ,  9  ,20 ,  2 , 21 , 18 , 22 ,  5 , 14 , 25 ,  3 ,  1)

p3<-c(3  ,15  ,17  ,14  , 5 , 25  ,11  ,10   ,9  ,13  ,16   ,1  ,18   ,8  ,12   ,6  ,24   ,7   ,2  ,19  ,23  ,21,  20,  22  , 4)

People between 25-40 years

p4 <-c(24,5,25,23,12,3,7,20,17,18,13,19,9,11,1,2,4,6,22,16,14,8,15,10,21)

p5 <-c(13,21,20,3,23,9,24,4,7,15,25,1,10,14,8,12,18,22,19,16,11,2,5,6,17)

p6 <-c(21,23,16,6,25,22,18,19,14,24,9,1,8,10,20,4,11,15,5,17,12,7,3,13,2)

People between 40-55 years

p7 <- c(15,4,21,11,20,2,17,24,25,19,3,1,23,8,6,12,9,13,10,14,22,5,18,16,7)

p8 <- c(11,1,20,2,6,14,25,21,7,8,15,22,10,17,12,5,9,13,18,24,23,16,3,4,19)

p9 <- c(20,15,2,7,18,19,13,12,24,25,3,22,16,14,11,10,6,8,5,1,17,21,4,9,23)

People >55 years

p10<-c(10,6,4,20,17,5,8,7,16,1,11,9,19,24,15,18,23,22,3,2,25,13,12,21,14)

p11<-c(6,11,2,10,16,20,17,19,25,21,4,23,8,13,5,12,3,22,24,7,9,14,18,15,1)

p12<-c(15,21,8,7,4,1,20,5,2,6,23,25,13,9,24,10,18,14,12,11,19,3,17,16,22)

Generate a table with the different users and choosed statges from worst to best:

y2<-cbind(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12)
y2
##       p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12
##  [1,]  8  7  3 24 13 21 15 11 20  10   6  15
##  [2,]  1 11 15  5 21 23  4  1 15   6  11  21
##  [3,]  6 19 17 25 20 16 21 20  2   4   2   8
##  [4,]  2 10 14 23  3  6 11  2  7  20  10   7
##  [5,] 15  6  5 12 23 25 20  6 18  17  16   4
##  [6,] 22 24 25  3  9 22  2 14 19   5  20   1
##  [7,]  9 12 11  7 24 18 17 25 13   8  17  20
##  [8,] 24  8 10 20  4 19 24 21 12   7  19   5
##  [9,] 18  4  9 17  7 14 25  7 24  16  25   2
## [10,] 13 15 13 18 15 24 19  8 25   1  21   6
## [11,]  3 16 16 13 25  9  3 15  3  11   4  23
## [12,] 16 23  1 19  1  1  1 22 22   9  23  25
## [13,]  5 13 18  9 10  8 23 10 16  19   8  13
## [14,] 20 17  8 11 14 10  8 17 14  24  13   9
## [15,] 23  9 12  1  8 20  6 12 11  15   5  24
## [16,] 11 20  6  2 12  4 12  5 10  18  12  10
## [17,]  7  2 24  4 18 11  9  9  6  23   3  18
## [18,]  4 21  7  6 22 15 13 13  8  22  22  14
## [19,] 21 18  2 22 19  5 10 18  5   3  24  12
## [20,] 10 22 19 16 16 17 14 24  1   2   7  11
## [21,] 14  5 23 14 11 12 22 23 17  25   9  19
## [22,] 19 14 21  8  2  7  5 16 21  13  14   3
## [23,] 12 25 20 15  5  3 18  3  4  12  18  17
## [24,] 25  3 22 10  6 13 16  4  9  21  15  16
## [25,] 17  1  4 21 17  2  7 19 23  14   1  22

Now we calculate the percentage of the best preference:

cont<-0

#now we calculate the percentage of the best preference 

for (i in 1:25) {
cont<-0
if(p1[i]==25)cont=cont+1
if(p2[i]==25)cont=cont+1
if(p3[i]==25)cont=cont+1
if(p4[i]==25)cont=cont+1
if(p5[i]==25)cont=cont+1
if(p6[i]==25)cont=cont+1
if(p7[i]==25)cont=cont+1
if(p8[i]==25)cont=cont+1
if(p9[i]==25)cont=cont+1
if(p10[i]==25)cont=cont+1
if(p11[i]==25)cont=cont+1
if(p12[i]==25)cont=cont+1

if(i==1)cont1=(cont/12)*100
if(i==2)cont2=(cont/12)*100
if(i==3)cont3=(cont/12)*100
if(i==4)cont4=(cont/12)*100
if(i==5)cont5=(cont/12)*100
if(i==6)cont6=(cont/12)*100
if(i==7)cont7=(cont/12)*100
if(i==8)cont8=(cont/12)*100
if(i==9)cont9=(cont/12)*100
if(i==10)cont10=(cont/12)*100
if(i==11)cont11=(cont/12)*100
if(i==12)cont12=(cont/12)*100
if(i==13)cont13=(cont/12)*100
if(i==14)cont14=(cont/12)*100
if(i==15)cont15=(cont/12)*100
if(i==16)cont16=(cont/12)*100
if(i==17)cont17=(cont/12)*100
if(i==18)cont18=(cont/12)*100
if(i==19)cont19=(cont/12)*100
if(i==20)cont20=(cont/12)*100
if(i==21)cont21=(cont/12)*100
if(i==22)cont22=(cont/12)*100
if(i==23)cont23=(cont/12)*100
if(i==24)cont24=(cont/12)*100
if(i==25)cont25=(cont/12)*100
}

Making these long functions, we realize that the best choice for users is the scenario 9

cont9
## [1] 16.66667

Now we calculate the percentatge of the worst preference:

#now we calculate the percentage of the worst preference 
for (i in 1:25) {
  cont<-0
  if(p1[i]==1)cont=cont+1
  if(p2[i]==1)cont=cont+1
  if(p3[i]==1)cont=cont+1
  if(p4[i]==1)cont=cont+1
  if(p5[i]==1)cont=cont+1
  if(p6[i]==1)cont=cont+1
  if(p7[i]==1)cont=cont+1
  if(p8[i]==1)cont=cont+1
  if(p9[i]==1)cont=cont+1
  if(p10[i]==1)cont=cont+1
  if(p11[i]==1)cont=cont+1
  if(p12[i]==1)cont=cont+1
  
  
  if(i==1)cont1=(cont/12)*100
  if(i==2)cont2=(cont/12)*100
  if(i==3)cont3=(cont/12)*100
  if(i==4)cont4=(cont/12)*100
  if(i==5)cont5=(cont/12)*100
  if(i==6)cont6=(cont/12)*100
  if(i==7)cont7=(cont/12)*100
  if(i==8)cont8=(cont/12)*100
  if(i==9)cont9=(cont/12)*100
  if(i==10)cont10=(cont/12)*100
  if(i==11)cont11=(cont/12)*100
  if(i==12)cont12=(cont/12)*100
  if(i==13)cont13=(cont/12)*100
  if(i==14)cont14=(cont/12)*100
  if(i==15)cont15=(cont/12)*100
  if(i==16)cont16=(cont/12)*100
  if(i==17)cont17=(cont/12)*100
  if(i==18)cont18=(cont/12)*100
  if(i==19)cont19=(cont/12)*100
  if(i==20)cont20=(cont/12)*100
  if(i==21)cont21=(cont/12)*100
  if(i==22)cont22=(cont/12)*100
  if(i==23)cont23=(cont/12)*100
  if(i==24)cont24=(cont/12)*100
  if(i==25)cont25=(cont/12)*100
}

Making these long functions, we realize that the worst choice for users is the scenario 12

cont12
## [1] 33.33333