Figure 1. Weight effect of rho

Weight effect of rho

Figure 2. Weight effect of lung P value

Weight effect of lung P value

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.4
library(reshape)
library(knitr)
library(xtable)
merged.mouse.eQTL.min.variance2<-read.table(file="2016-02-22-merged.mouse.eQTL.min.variance.txt",  header=T)
merged.mouse.eQTL.min.variance2$abs_liver.beta<-abs(merged.mouse.eQTL.min.variance2$liver.beta)
merged.mouse.eQTL.min.variance2$abs_lung.beta<-abs(merged.mouse.eQTL.min.variance2$lung.beta)
merged.mouse.eQTL.min.variance2$neg_log_lung_pvalue<--log(merged.mouse.eQTL.min.variance2$lung_pvalue)
merged.mouse.eQTL<-merged.mouse.eQTL.min.variance2
markers<-merged.mouse.eQTL[, 1]
# Yg=Ag + Bg*Xsnp+V
betas.hat<-abs(merged.mouse.eQTL[,2])
se<-(merged.mouse.eQTL[,3])
liver_residual_variance<-merged.mouse.eQTL[,4]
Z<-as.matrix(merged.mouse.eQTL[,10])
Z<-replace(Z,is.na(Z),0)
Z<-data.frame(1,Z) 
Z<-as.matrix(Z)
rowLength<-length(markers)
lmsummary<-summary(lm(abs_liver.beta~-1+Z, data=merged.mouse.eQTL))
tau<-lmsummary$sigma**2
tau
## [1] 0.009699749
gamma<-as.matrix(lmsummary$coefficients[,1])
Z_transpose<-t(Z)
identity<-diag(nrow=rowLength) 
betas.hat<-as.matrix(betas.hat)
V <- matrix(0, rowLength, rowLength)
diag(V) <-liver_residual_variance 
Tau<- diag(tau, rowLength, rowLength)
s<-V + Tau
diag.inverse <- function(x){diag(1/diag(x), nrow(x), ncol(x))}
diag.multi <- function(x,y){diag(diag(x)*diag(y), nrow(x), ncol(x))}
S <-diag.inverse(s)
omega<-diag.multi(S, V)
omega.diag<-diag(omega )
# betas.thea<- S %*% Z %*% gamma + (identity-S) %*% betas.hat
betas.tieda<- omega %*% Z %*% gamma + (identity-omega) %*% betas.hat
# crbetas.tieda<- cromega %*% Z %*% gamma + (identity-cromega) %*% betas.hat
regbeta <-Z %*% gamma
liver.mouse.eQTL.bayesian.4tau <- read.table(file="2016-03-15_liver.mouse.eQTL.bayesian.4tau.txt", head=TRUE)
liver.mouse.eQTL.bayesian.4tau$fzm <- -log10(exp(-liver.mouse.eQTL.bayesian.4tau$neg_log_lung_pvalue))
range(liver.mouse.eQTL.bayesian.4tau$fzm)
## [1] 8.678947e-16 1.727677e+01
liver.mouse.eQTL.bayesian.4tau$ratio_fzm <- max(liver.mouse.eQTL.bayesian.4tau$fzm)/liver.mouse.eQTL.bayesian.4tau$fzm

range(liver.mouse.eQTL.bayesian.4tau$ratio_fzm)
## [1] 1.000000e+00 1.990653e+16
rho.optimization <- matrix(0, nrow=nrow(liver.mouse.eQTL.bayesian.4tau), ncol=7)
colnames(rho.optimization)<-c("rho","tmm","tau", "omega","beta_tieda", "n.betas.tieda.se","p.below.0" )
nomega.diag<-diag(nomega )
rho <- seq(1,51, by=10)*tau
rho
result <- NULL
for (i in 1:length(rho))  {
  rho.optimization[ ,1] <- rho[i]
  rho.optimization[ ,2] <- (rho[i]/tau)^liver.mouse.eQTL.bayesian.4tau$ratio_fzm
  rho.optimization[ ,3] <-tau*((rho[i]/tau)^liver.mouse.eQTL.bayesian.4tau$ratio_fzm)
  nTau<- diag(rho.optimization[i,3], rowLength, rowLength)
  ns<-V + nTau
  nS <- diag.inverse(ns)
  nomega<-diag.multi(nS, V)
  rho.optimization[ ,4] <- diag(nomega )
  rho.optimization[ ,5] <-nomega %*% Z %*% gamma + (identity-nomega) %*% betas.hat
  nTau_invert<-diag.inverse(nTau)
  V_invert<-diag.inverse(V)
  nPS_invert<-nTau_invert+ diag.multi(diag.multi(V_invert, Z),  Z_transpose)
  nPS<-diag.inverse(nPS_invert)
  nps<-diag(nPS)
  nps.long <- melt(nps)
  rho.optimization[ ,6] <-(nps.long$value)^0.5
  rho.optimization[ ,7] <- pnorm(0, rho.optimization[ ,5], rho.optimization[ ,6])
  result <- rbind(result,rho.optimization)
}
  

result$p.below.0 <- pnorm(0, rho.optimization[ ,5], rho.optimization[ ,6])
write.table(result, file="2016-03-31_liver.mouse.eQTL.bayesian.result.txt",col.names=TRUE,row.names=FALSE,quote=FALSE)
liver.mouse.eQTL.bayesian.result <- read.table(file="2016-03-31_liver.mouse.eQTL.bayesian.result.txt",  header=T)
knitr::kable(head(liver.mouse.eQTL.bayesian.result))
rho tmm tau omega beta_tieda n.betas.tieda.se p.below.0
0.0096997 1 0.0096997 0.6609725 0.0335649 0.0800704 0.3375376
0.0096997 1 0.0096997 0.2791983 0.0236274 0.0983765 0.4050981
0.0096997 1 0.0096997 0.3255088 0.0140638 0.0561903 0.4011821
0.0096997 1 0.0096997 0.1586587 0.0416051 0.0982601 0.3359952
0.0096997 1 0.0096997 0.8895190 0.0401108 0.0928876 0.3329360
0.0096997 1 0.0096997 0.3335208 0.0306453 0.0984015 0.3777363
knitr::kable(tail(liver.mouse.eQTL.bayesian.result))
rho tmm tau omega beta_tieda n.betas.tieda.se p.below.0
66049 0.4946872 3.505540e+40 3.400286e+38 0 0.0620446 4.9723544 0.4950222
66050 0.4946872 2.253892e+17 2.186218e+15 0 0.0301131 0.0815362 0.3559438
66051 0.4946872 3.460209e+72 3.356316e+70 0 0.0094306 2.5394473 0.4985185
66052 0.4946872 1.956586e+51 1.897839e+49 0 0.0393708 0.1246289 0.3760376
66053 0.4946872 1.315110e+25 1.275623e+23 0 0.0078469 3.5286804 0.4991129
66054 0.4946872 7.056647e+25 6.844771e+23 0 0.0437639 0.1516059 0.3864174
result.df <-liver.mouse.eQTL.bayesian.result

result.df$rho.class <- factor(result.df$rho/tau)
a <-liver.mouse.eQTL.bayesian.4tau[, c(1:2, 6, 7, 9)]
a <-rbind(a, a, a, a, a,a)
dim(a)
## [1] 66054     5
new.result.df<-cbind(a, result.df)
knitr::kable(head(new.result.df))
ensembl_id betas.hat liver_residual_variance liver_pvalue neg_log_lung_pvalue rho tmm tau omega beta_tieda n.betas.tieda.se p.below.0 rho.class
ENSMUSG00000000001 0.0159861 0.0189108 0.5377718 2.0960974 0.0096997 1 0.0096997 0.6609725 0.0335649 0.0800704 0.3375376 1
ENSMUSG00000000003 0.0168807 0.0037571 0.1929225 2.7653413 0.0096997 1 0.0096997 0.2791983 0.0236274 0.0983765 0.4050981 1
ENSMUSG00000000037 0.0038651 0.0046811 0.7788138 1.1814994 0.0096997 1 0.0096997 0.3255088 0.0140638 0.0561903 0.4011821 1
ENSMUSG00000000049 0.0422333 0.0018292 0.0000091 0.2321777 0.0096997 1 0.0096997 0.1586587 0.0416051 0.0982601 0.3359952 1
ENSMUSG00000000056 0.0636041 0.0780959 0.2269175 1.5218109 0.0096997 1 0.0096997 0.8895190 0.0401108 0.0928876 0.3329360 1
ENSMUSG00000000058 0.0256111 0.0048540 0.0584692 1.2292565 0.0096997 1 0.0096997 0.3335208 0.0306453 0.0984015 0.3777363 1
knitr::kable(tail(new.result.df))
ensembl_id betas.hat liver_residual_variance liver_pvalue neg_log_lung_pvalue rho tmm tau omega beta_tieda n.betas.tieda.se p.below.0 rho.class
66049 ENSMUSG00000099041 0.0620446 0.0215887 0.0286190 1.675414 0.4946872 3.505540e+40 3.400286e+38 0 0.0620446 4.9723544 0.4950222 51
66050 ENSMUSG00000099083 0.0301131 0.0066482 0.0547402 3.914568 0.4946872 2.253892e+17 2.186218e+15 0 0.0301131 0.0815362 0.3559438 51
66051 ENSMUSG00000099116 0.0094306 0.0056309 0.5055630 0.936450 0.4946872 3.460209e+72 3.356316e+70 0 0.0094306 2.5394473 0.4985185 51
66052 ENSMUSG00000099164 0.0393708 0.0155324 0.1065382 1.324376 0.4946872 1.956586e+51 1.897839e+49 0 0.0393708 0.1246289 0.3760376 51
66053 ENSMUSG00000099262 0.0078469 0.0108725 0.6941870 2.704301 0.4946872 1.315110e+25 1.275623e+23 0 0.0078469 3.5286804 0.4991129 51
66054 ENSMUSG00000099305 0.0437639 0.0229843 0.1325735 2.627966 0.4946872 7.056647e+25 6.844771e+23 0 0.0437639 0.1516059 0.3864174 51
knitr::kable(head(liver.mouse.eQTL.bayesian.4tau)) 
ensembl_id betas.hat betas.hat.se betas.tieda betas.tieda.se liver_residual_variance liver_pvalue abs_lung.beta neg_log_lung_pvalue p.below.0 betas.tieda2m betas.tieda3rd betas.tieda4max fzm ratio_fzm
ENSMUSG00000000001 0.0159861 0.0256247 0.0335649 0.0800559 0.0189108 0.5377718 0.0326900 2.0960974 0.3375098 0.0328346 0.0277012 0.0161111 0.9103235 18.97871
ENSMUSG00000000003 0.0168807 0.0126533 0.0236274 0.0520236 0.0037571 0.1929225 0.0295496 2.7653413 0.3248544 0.0230580 0.0201492 0.0169033 1.2009724 14.38565
ENSMUSG00000000037 0.0038651 0.0136293 0.0140638 0.0561845 0.0046811 0.7788138 0.0175948 1.1814994 0.4011720 0.0132541 0.0089752 0.0039017 0.5131187 33.67012
ENSMUSG00000000049 0.0422333 0.0078085 0.0416051 0.0392200 0.0018292 0.0000091 0.0238839 0.2321777 0.1443878 0.0416661 0.0419531 0.0422315 0.1008335 171.33960
ENSMUSG00000000056 0.0636041 0.0514812 0.0401108 0.0928852 0.0780959 0.2269175 0.0216750 1.5218109 0.3329319 0.0404380 0.0434054 0.0630989 0.6609141 26.14072
ENSMUSG00000000058 0.0256111 0.0129823 0.0306453 0.0568619 0.0048540 0.0584692 0.0288547 1.2292565 0.2949631 0.0302500 0.0281486 0.0256294 0.5338593 32.36202
new.result.df2 <- new.result.df
by(new.result.df2, new.result.df2[, "rho.class"], head)
## new.result.df2[, "rho.class"]: 1
##           ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 1 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 2 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 3 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 4 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 5 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 6 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##   neg_log_lung_pvalue         rho tmm         tau     omega beta_tieda
## 1           2.0960974 0.009699749   1 0.009699749 0.6609725 0.03356494
## 2           2.7653413 0.009699749   1 0.009699749 0.2791983 0.02362737
## 3           1.1814994 0.009699749   1 0.009699749 0.3255088 0.01406380
## 4           0.2321777 0.009699749   1 0.009699749 0.1586587 0.04160507
## 5           1.5218109 0.009699749   1 0.009699749 0.8895190 0.04011077
## 6           1.2292565 0.009699749   1 0.009699749 0.3335208 0.03064532
##   n.betas.tieda.se p.below.0 rho.class
## 1       0.08007039 0.3375376         1
## 2       0.09837648 0.4050981         1
## 3       0.05619033 0.4011821         1
## 4       0.09826008 0.3359952         1
## 5       0.09288763 0.3329360         1
## 6       0.09840149 0.3777363         1
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 11
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 11010 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 11011 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 11012 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 11013 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 11014 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 11015 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho           tmm           tau
## 11010           2.0960974 0.1066972  5.811545e+19  5.637053e+17
## 11011           2.7653413 0.1066972  9.574358e+14  9.286887e+12
## 11012           1.1814994 0.1066972  1.158295e+35  1.123517e+33
## 11013           0.2321777 0.1066972 2.702759e+178 2.621608e+176
## 11014           1.5218109 0.1066972  1.670136e+27  1.619991e+25
## 11015           1.2292565 0.1066972  5.030091e+33  4.879062e+31
##              omega  beta_tieda n.betas.tieda.se p.below.0 rho.class
## 11010 2.036286e-15 0.015986111       0.13751641 0.4537277        11
## 11011 4.045642e-16 0.016880682       2.07432714 0.4967535        11
## 11012 5.040537e-16 0.003865079       0.06841849 0.4774750        11
## 11013 1.969618e-16 0.042233333       1.44735324 0.4883606        11
## 11014 8.409267e-15 0.063604072       0.27945646 0.4099789        11
## 11015 5.226690e-16 0.025611111       2.35774553 0.4956666        11
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 21
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 22019 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 22020 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 22021 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 22022 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 22023 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 22024 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho           tmm           tau
## 22019           2.0960974 0.2036947  1.241706e+25  1.204424e+23
## 22020           2.7653413 0.2036947  1.049501e+19  1.017989e+17
## 22021           1.1814994 0.2036947  3.305866e+44  3.206608e+42
## 22022           0.2321777 0.2036947 3.536116e+226 3.429944e+224
## 22023           1.5218109 0.2036947  3.662360e+34  3.552397e+32
## 22024           1.2292565 0.2036947  6.161600e+42  5.976597e+40
##              omega  beta_tieda n.betas.tieda.se p.below.0 rho.class
## 22019 5.897436e-45 0.015986111       0.13751641 0.4537277        21
## 22020 1.171687e-45 0.016880682       2.07432714 0.4967535        21
## 22021 1.459826e-45 0.003865079       0.06841849 0.4774750        21
## 22022 5.704352e-46 0.042233333       1.44735324 0.4883606        21
## 22023 2.435468e-44 0.063604072       0.27945646 0.4099789        21
## 22024 1.513739e-45 0.025611111       2.35774553 0.4956666        21
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 31
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 33028 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 33029 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 33030 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 33031 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 33032 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 33033 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho           tmm           tau
## 33028           2.0960974 0.3006922  2.014298e+28  1.953819e+26
## 33029           2.7653413 0.3006922  2.845810e+21  2.760364e+19
## 33030           1.1814994 0.3006922  1.638063e+50  1.588880e+48
## 33031           0.2321777 0.3006922 3.383123e+255 3.281544e+253
## 33032           1.5218109 0.3006922  9.666398e+38  9.376164e+36
## 33033           1.2292565 0.3006922  1.834357e+48  1.779281e+46
##               omega  beta_tieda n.betas.tieda.se p.below.0 rho.class
## 33028 5.762763e-256 0.015986111       0.13751641 0.4537277        31
## 33029 1.144931e-256 0.016880682       2.07432714 0.4967535        31
## 33030 1.426490e-256 0.003865079       0.06841849 0.4774750        31
## 33031 5.574089e-257 0.042233333       1.44735324 0.4883606        31
## 33032 2.379852e-255 0.063604072       0.27945646 0.4099789        31
## 33033 1.479172e-256 0.025611111       2.35774553 0.4956666        31
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 41
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 44037 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 44038 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 44039 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 44040 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 44041 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 44042 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho           tmm           tau
## 44037           2.0960974 0.3976897  4.060318e+30  3.938406e+28
## 44038           2.7653413 0.3976897  1.588336e+23  1.540647e+21
## 44039           1.1814994 0.3976897  2.007380e+54  1.947108e+52
## 44040           0.2321777 0.3976897 2.156466e+276 2.091718e+274
## 44041           1.5218109 0.3976897  1.443202e+42  1.399870e+40
## 44042           1.2292565 0.3976897  1.559377e+52  1.512556e+50
##              omega  beta_tieda n.betas.tieda.se p.below.0 rho.class
## 44037 1.350894e-42 0.015986111       0.13751641 0.4537277        41
## 44038 2.683922e-43 0.016880682       2.07432714 0.4967535        41
## 44039 3.343946e-43 0.003865079       0.06841849 0.4774750        41
## 44040 1.306666e-43 0.042233333       1.44735324 0.4883606        41
## 44041 5.578798e-42 0.063604072       0.27945646 0.4099789        41
## 44042 3.467443e-43 0.025611111       2.35774553 0.4956666        41
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 51
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 55046 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 55047 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 55048 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 55049 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 55050 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 55051 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho           tmm           tau
## 55046           2.0960974 0.4946872  2.555537e+32  2.478807e+30
## 55047           2.7653413 0.4946872  3.668641e+24  3.558490e+22
## 55048           1.1814994 0.4946872  3.119583e+57  3.025918e+55
## 55049           0.2321777 0.4946872 3.753124e+292 3.640436e+290
## 55050           1.5218109 0.4946872  4.336202e+44  4.206008e+42
## 55051           1.2292565 0.4946872  1.821496e+55  1.766805e+53
##              omega  beta_tieda n.betas.tieda.se p.below.0 rho.class
## 55046 1.070336e-55 0.015986111       0.13751641 0.4537277        51
## 55047 2.126517e-56 0.016880682       2.07432714 0.4967535        51
## 55048 2.649465e-56 0.003865079       0.06841849 0.4774750        51
## 55049 1.035293e-56 0.042233333       1.44735324 0.4883606        51
## 55050 4.420176e-55 0.063604072       0.27945646 0.4099789        51
## 55051 2.747313e-56 0.025611111       2.35774553 0.4956666        51
by(new.result.df2, new.result.df2[, "rho.class"], summary)
## new.result.df2[, "rho.class"]: 1
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho              tmm   
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.0097   Min.   :1  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.0097   1st Qu.:1  
##  Median :0.21634   Median : 1.6936     Median :0.0097   Median :1  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.0097   Mean   :1  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.0097   3rd Qu.:1  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.0097   Max.   :1  
##                                                                    
##       tau             omega           beta_tieda       n.betas.tieda.se 
##  Min.   :0.0097   Min.   :0.09131   Min.   :0.004582   Min.   :0.02976  
##  1st Qu.:0.0097   1st Qu.:0.36400   1st Qu.:0.024829   1st Qu.:0.07093  
##  Median :0.0097   Median :0.52523   Median :0.035162   Median :0.09819  
##  Mean   :0.0097   Mean   :0.54385   Mean   :0.045850   Mean   :0.08474  
##  3rd Qu.:0.0097   3rd Qu.:0.70825   3rd Qu.:0.051346   3rd Qu.:0.09845  
##  Max.   :0.0097   Max.   :0.99758   Max.   :1.223416   Max.   :0.09849  
##                                                                         
##    p.below.0      rho.class 
##  Min.   :0.0000   1 :11009  
##  1st Qu.:0.2707   11:    0  
##  Median :0.3346   21:    0  
##  Mean   :0.3117   31:    0  
##  3rd Qu.:0.3794   41:    0  
##  Max.   :0.4779   51:    0  
##                             
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 11
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.1067  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.1067  
##  Median :0.21634   Median : 1.6936     Median :0.1067  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.1067  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.1067  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.1067  
##                                                        
##       tmm                 tau                omega          
##  Min.   :1.100e+01   Min.   :0.000e+00   Min.   :1.050e-16  
##  1st Qu.:4.938e+11   1st Qu.:4.790e+09   1st Qu.:5.978e-16  
##  Median :2.892e+24   Median :2.805e+22   Median :1.155e-15  
##  Mean   :      Inf   Mean   :      Inf   Mean   :3.124e-15  
##  3rd Qu.:2.434e+51   3rd Qu.:2.361e+49   3rd Qu.:2.536e-15  
##  Max.   :      Inf   Max.   :      Inf   Max.   :4.312e-13  
##                                                             
##    beta_tieda      n.betas.tieda.se     p.below.0      rho.class 
##  Min.   :0.00000   Min.   : 0.03122   Min.   :0.0000   1 :    0  
##  1st Qu.:0.01186   1st Qu.: 0.10225   1st Qu.:0.4062   11:11009  
##  Median :0.02430   Median : 1.26303   Median :0.4865   21:    0  
##  Mean   :0.05436   Mean   : 2.35767   Mean   :0.4358   31:    0  
##  3rd Qu.:0.05360   3rd Qu.: 3.54499   3rd Qu.:0.4973   41:    0  
##  Max.   :2.76340   Max.   :46.84959   Max.   :0.5000   51:    0  
##                                                                  
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 21
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.2037  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.2037  
##  Median :0.21634   Median : 1.6936     Median :0.2037  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.2037  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.2037  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.2037  
##                                                        
##       tmm                 tau                omega          
##  Min.   :2.100e+01   Min.   :0.000e+00   Min.   :3.040e-46  
##  1st Qu.:7.029e+14   1st Qu.:6.818e+12   1st Qu.:1.731e-45  
##  Median :1.142e+31   Median :1.107e+29   Median :3.346e-45  
##  Mean   :      Inf   Mean   :      Inf   Mean   :9.047e-45  
##  3rd Qu.:1.752e+65   3rd Qu.:1.699e+63   3rd Qu.:7.343e-45  
##  Max.   :      Inf   Max.   :      Inf   Max.   :1.249e-42  
##                                                             
##    beta_tieda      n.betas.tieda.se     p.below.0      rho.class 
##  Min.   :0.00000   Min.   : 0.03122   Min.   :0.0000   1 :    0  
##  1st Qu.:0.01186   1st Qu.: 0.10225   1st Qu.:0.4062   11:    0  
##  Median :0.02430   Median : 1.26303   Median :0.4865   21:11009  
##  Mean   :0.05436   Mean   : 2.35767   Mean   :0.4358   31:    0  
##  3rd Qu.:0.05360   3rd Qu.: 3.54499   3rd Qu.:0.4973   41:    0  
##  Max.   :2.76340   Max.   :46.84959   Max.   :0.5000   51:    0  
##                                                                  
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 31
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.3007  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.3007  
##  Median :0.21634   Median : 1.6936     Median :0.3007  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.3007  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.3007  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.3007  
##                                                        
##       tmm                 tau                omega           
##  Min.   :3.100e+01   Min.   :0.000e+00   Min.   :2.970e-257  
##  1st Qu.:5.574e+16   1st Qu.:5.406e+14   1st Qu.:1.692e-256  
##  Median :1.073e+35   Median :1.041e+33   Median :3.270e-256  
##  Mean   :      Inf   Mean   :      Inf   Mean   :8.840e-256  
##  3rd Qu.:3.887e+73   3rd Qu.:3.771e+71   3rd Qu.:7.176e-256  
##  Max.   :      Inf   Max.   :      Inf   Max.   :1.220e-253  
##                                                              
##    beta_tieda      n.betas.tieda.se     p.below.0      rho.class 
##  Min.   :0.00000   Min.   : 0.03122   Min.   :0.0000   1 :    0  
##  1st Qu.:0.01186   1st Qu.: 0.10225   1st Qu.:0.4062   11:    0  
##  Median :0.02430   Median : 1.26303   Median :0.4865   21:    0  
##  Mean   :0.05436   Mean   : 2.35767   Mean   :0.4358   31:11009  
##  3rd Qu.:0.05360   3rd Qu.: 3.54499   3rd Qu.:0.4973   41:    0  
##  Max.   :2.76340   Max.   :46.84959   Max.   :0.5000   51:    0  
##                                                                  
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 41
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.3977  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.3977  
##  Median :0.21634   Median : 1.6936     Median :0.3977  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.3977  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.3977  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.3977  
##                                                        
##       tmm                 tau                omega          
##  Min.   :4.100e+01   Min.   :0.000e+00   Min.   :6.963e-44  
##  1st Qu.:1.287e+18   1st Qu.:1.248e+16   1st Qu.:3.966e-43  
##  Median :7.631e+37   Median :7.402e+35   Median :7.665e-43  
##  Mean   :      Inf   Mean   :      Inf   Mean   :2.072e-42  
##  3rd Qu.:3.811e+79   3rd Qu.:3.697e+77   3rd Qu.:1.682e-42  
##  Max.   :      Inf   Max.   :      Inf   Max.   :2.861e-40  
##                                                             
##    beta_tieda      n.betas.tieda.se     p.below.0      rho.class 
##  Min.   :0.00000   Min.   : 0.03122   Min.   :0.0000   1 :    0  
##  1st Qu.:0.01186   1st Qu.: 0.10225   1st Qu.:0.4062   11:    0  
##  Median :0.02430   Median : 1.26303   Median :0.4865   21:    0  
##  Mean   :0.05436   Mean   : 2.35767   Mean   :0.4358   31:    0  
##  3rd Qu.:0.05360   3rd Qu.: 3.54499   3rd Qu.:0.4973   41:11009  
##  Max.   :2.76340   Max.   :46.84959   Max.   :0.5000   51:    0  
##                                                                  
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 51
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.4947  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.4947  
##  Median :0.21634   Median : 1.6936     Median :0.4947  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.4947  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.4947  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.4947  
##                                                        
##       tmm                 tau                omega          
##  Min.   :5.100e+01   Min.   :0.000e+00   Min.   :5.517e-57  
##  1st Qu.:1.492e+19   1st Qu.:1.448e+17   1st Qu.:3.142e-56  
##  Median :1.285e+40   Median :1.247e+38   Median :6.074e-56  
##  Mean   :      Inf   Mean   :      Inf   Mean   :1.642e-55  
##  3rd Qu.:1.812e+84   3rd Qu.:1.758e+82   3rd Qu.:1.333e-55  
##  Max.   :      Inf   Max.   :      Inf   Max.   :2.267e-53  
##                                                             
##    beta_tieda      n.betas.tieda.se     p.below.0      rho.class 
##  Min.   :0.00000   Min.   : 0.03122   Min.   :0.0000   1 :    0  
##  1st Qu.:0.01186   1st Qu.: 0.10225   1st Qu.:0.4062   11:    0  
##  Median :0.02430   Median : 1.26303   Median :0.4865   21:    0  
##  Mean   :0.05436   Mean   : 2.35767   Mean   :0.4358   31:    0  
##  3rd Qu.:0.05360   3rd Qu.: 3.54499   3rd Qu.:0.4973   41:    0  
##  Max.   :2.76340   Max.   :46.84959   Max.   :0.5000   51:11009  
## 
sorted.new.result.df2 <- new.result.df2[order(new.result.df2$rho.class, new.result.df2$neg_log_lung_pvalue),]
by(sorted.new.result.df2[c(1, 2,5, 10)], sorted.new.result.df2[, "rho.class"], tail)
## sorted.new.result.df2[, "rho.class"]: 1
##              ensembl_id   betas.hat neg_log_lung_pvalue beta_tieda
## 4868 ENSMUSG00000028656 1.064626984            29.46768  0.7888386
## 8589 ENSMUSG00000044827 0.043061086            29.63010  0.1112840
## 8658 ENSMUSG00000045594 0.272539683            29.80771  0.1810885
## 1614 ENSMUSG00000020022 0.581488038            30.48351  0.2558550
## 993  ENSMUSG00000011884 0.003957014            32.50629  0.1357632
## 8387 ENSMUSG00000042684 0.058696429            39.78123  0.1519445
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 11
##               ensembl_id   betas.hat neg_log_lung_pvalue  beta_tieda
## 15877 ENSMUSG00000028656 1.064626984            29.46768 1.064626984
## 19598 ENSMUSG00000044827 0.043061086            29.63010 0.043061086
## 19667 ENSMUSG00000045594 0.272539683            29.80771 0.272539683
## 12623 ENSMUSG00000020022 0.581488038            30.48351 0.581488038
## 12002 ENSMUSG00000011884 0.003957014            32.50629 0.003957014
## 19396 ENSMUSG00000042684 0.058696429            39.78123 0.058696429
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 21
##               ensembl_id   betas.hat neg_log_lung_pvalue  beta_tieda
## 26886 ENSMUSG00000028656 1.064626984            29.46768 1.064626984
## 30607 ENSMUSG00000044827 0.043061086            29.63010 0.043061086
## 30676 ENSMUSG00000045594 0.272539683            29.80771 0.272539683
## 23632 ENSMUSG00000020022 0.581488038            30.48351 0.581488038
## 23011 ENSMUSG00000011884 0.003957014            32.50629 0.003957014
## 30405 ENSMUSG00000042684 0.058696429            39.78123 0.058696429
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 31
##               ensembl_id   betas.hat neg_log_lung_pvalue  beta_tieda
## 37895 ENSMUSG00000028656 1.064626984            29.46768 1.064626984
## 41616 ENSMUSG00000044827 0.043061086            29.63010 0.043061086
## 41685 ENSMUSG00000045594 0.272539683            29.80771 0.272539683
## 34641 ENSMUSG00000020022 0.581488038            30.48351 0.581488038
## 34020 ENSMUSG00000011884 0.003957014            32.50629 0.003957014
## 41414 ENSMUSG00000042684 0.058696429            39.78123 0.058696429
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 41
##               ensembl_id   betas.hat neg_log_lung_pvalue  beta_tieda
## 48904 ENSMUSG00000028656 1.064626984            29.46768 1.064626984
## 52625 ENSMUSG00000044827 0.043061086            29.63010 0.043061086
## 52694 ENSMUSG00000045594 0.272539683            29.80771 0.272539683
## 45650 ENSMUSG00000020022 0.581488038            30.48351 0.581488038
## 45029 ENSMUSG00000011884 0.003957014            32.50629 0.003957014
## 52423 ENSMUSG00000042684 0.058696429            39.78123 0.058696429
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 51
##               ensembl_id   betas.hat neg_log_lung_pvalue  beta_tieda
## 59913 ENSMUSG00000028656 1.064626984            29.46768 1.064626984
## 63634 ENSMUSG00000044827 0.043061086            29.63010 0.043061086
## 63703 ENSMUSG00000045594 0.272539683            29.80771 0.272539683
## 56659 ENSMUSG00000020022 0.581488038            30.48351 0.581488038
## 56038 ENSMUSG00000011884 0.003957014            32.50629 0.003957014
## 63432 ENSMUSG00000042684 0.058696429            39.78123 0.058696429
by(sorted.new.result.df2, sorted.new.result.df2[, "rho.class"], tail)
## sorted.new.result.df2[, "rho.class"]: 1
##              ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 4868 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 8589 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 8658 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 1614 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 993  ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 8387 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##      neg_log_lung_pvalue         rho tmm         tau     omega beta_tieda
## 4868            29.46768 0.009699749   1 0.009699749 0.6548994  0.7888386
## 8589            29.63010 0.009699749   1 0.009699749 0.2455859  0.1112840
## 8658            29.80771 0.009699749   1 0.009699749 0.7577397  0.1810885
## 1614            30.48351 0.009699749   1 0.009699749 0.8494937  0.2558550
## 993             32.50629 0.009699749   1 0.009699749 0.6892381  0.1357632
## 8387            39.78123 0.009699749   1 0.009699749 0.3341640  0.1519445
##      n.betas.tieda.se    p.below.0 rho.class
## 4868       0.09846466 5.671021e-16         1
## 8589       0.04880698 1.130136e-02         1
## 8658       0.09847356 3.296088e-02         1
## 1614       0.09847969 4.687769e-03         1
## 993        0.08176452 4.841523e-02         1
## 8387       0.05693248 3.805517e-03         1
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 11
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 15877 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 19598 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 19667 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 12623 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 12002 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 19396 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho      tmm       tau        omega
## 15877            29.46768 0.1066972 25.46099 0.2469652 1.982071e-15
## 19598            29.63010 0.1066972 25.01316 0.2426214 3.400039e-16
## 19667            29.80771 0.1066972 24.53792 0.2380117 3.266842e-15
## 12623            30.48351 0.1066972 22.85735 0.2217106 5.895164e-15
## 12002            32.50629 0.1066972 18.81296 0.1824810 2.316497e-15
## 19396            39.78123 0.1066972 11.00000 0.1066972 5.241827e-16
##        beta_tieda n.betas.tieda.se p.below.0 rho.class
## 15877 1.064626984       4.59137869 0.4083175        11
## 19598 0.043061086       0.05619233 0.2217441        11
## 19667 0.272539683       5.89450845 0.4815610        11
## 12623 0.581488038       7.91829147 0.4707296        11
## 12002 0.003957014       0.14667327 0.4892385        11
## 19396 0.058696429       0.06977124 0.2000984        11
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 21
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 26886 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 30607 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 30676 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 23632 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 23011 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 30405 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho      tmm       tau        omega
## 26886            29.46768 0.2036947 60.95228 0.5912218 5.740417e-45
## 30607            29.63010 0.2036947 59.59434 0.5780502 9.847099e-46
## 30676            29.80771 0.2036947 58.16044 0.5641417 9.461335e-45
## 23632            30.48351 0.2036947 53.15044 0.5155460 1.707341e-44
## 23011            32.50629 0.2036947 41.50812 0.4026183 6.708974e-45
## 30405            39.78123 0.2036947 21.00000 0.2036947 1.518123e-45
##        beta_tieda n.betas.tieda.se p.below.0 rho.class
## 26886 1.064626984       4.59137869 0.4083175        21
## 30607 0.043061086       0.05619233 0.2217441        21
## 30676 0.272539683       5.89450845 0.4815610        21
## 23632 0.581488038       7.91829147 0.4707296        21
## 23011 0.003957014       0.14667327 0.4892385        21
## 30405 0.058696429       0.06977124 0.2000984        21
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 31
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 37895 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 41616 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 41685 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 34641 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 34020 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 41414 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho       tmm       tau         omega
## 37895            29.46768 0.3006922 103.11726 1.0002116 5.609331e-256
## 41616            29.63010 0.3006922 100.52979 0.9751138 9.622233e-257
## 41685            29.80771 0.3006922  97.80574 0.9486912 9.245278e-256
## 34641            30.48351 0.3006922  88.35662 0.8570370 1.668352e-255
## 34020            32.50629 0.3006922  66.85435 0.6484704 6.555769e-256
## 41414            39.78123 0.3006922  31.00000 0.3006922 1.483456e-256
##        beta_tieda n.betas.tieda.se p.below.0 rho.class
## 37895 1.064626984       4.59137869 0.4083175        31
## 41616 0.043061086       0.05619233 0.2217441        31
## 41685 0.272539683       5.89450845 0.4815610        31
## 34641 0.581488038       7.91829147 0.4707296        31
## 34020 0.003957014       0.14667327 0.4892385        31
## 41414 0.058696429       0.06977124 0.2000984        31
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 41
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 48904 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 52625 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 52694 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 45650 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 45029 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 52423 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho       tmm       tau        omega
## 48904            29.46768 0.3976897 150.40100 1.4588520 1.314927e-42
## 52625            29.63010 0.3976897 146.32401 1.4193062 2.255623e-43
## 52694            29.80771 0.3976897 142.04103 1.3777623 2.167258e-42
## 45650            30.48351 0.3976897 127.26119 1.2344017 3.910915e-42
## 45029            32.50629 0.3976897  94.12959 0.9130335 1.536789e-42
## 52423            39.78123 0.3976897  41.00000 0.3976897 3.477484e-43
##        beta_tieda n.betas.tieda.se p.below.0 rho.class
## 48904 1.064626984       4.59137869 0.4083175        41
## 52625 0.043061086       0.05619233 0.2217441        41
## 52694 0.272539683       5.89450845 0.4815610        41
## 45650 0.581488038       7.91829147 0.4707296        41
## 45029 0.003957014       0.14667327 0.4892385        41
## 52423 0.058696429       0.06977124 0.2000984        41
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 51
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 59913 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 63634 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 63703 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 56659 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 56038 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 63432 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho      tmm       tau        omega
## 59913            29.46768 0.4946872 201.9351 1.9587199 1.041839e-55
## 63634            29.63010 0.4946872 196.1441 1.9025485 1.787168e-56
## 63703            29.80771 0.4946872 190.0707 1.8436382 1.717155e-55
## 56659            30.48351 0.4946872 169.1971 1.6411694 3.098684e-55
## 56038            32.50629 0.4946872 122.9492 1.1925765 1.217624e-55
## 63432            39.78123 0.4946872  51.0000 0.4946872 2.755270e-56
##        beta_tieda n.betas.tieda.se p.below.0 rho.class
## 59913 1.064626984       4.59137869 0.4083175        51
## 63634 0.043061086       0.05619233 0.2217441        51
## 63703 0.272539683       5.89450845 0.4815610        51
## 56659 0.581488038       7.91829147 0.4707296        51
## 56038 0.003957014       0.14667327 0.4892385        51
## 63432 0.058696429       0.06977124 0.2000984        51
liver.ASE <- read.csv(file= "ASE.genetics.113.153882-6.csv")
liver.ASE.symbol <- unique(liver.ASE$geneID)
length(liver.ASE.symbol)
## [1] 440
#liver.ASE <-liver.ASE[liver.ASE$geneID %in% names(table(liver.ASE$geneID))[table(liver.ASE$geneID) >=2], ]
sub.liver.ASE <-liver.ASE[which(liver.ASE$pvalBH.DxB7 < 0.05 & liver.ASE$pvalBH.BxD7 < 0.05), ]

dim(sub.liver.ASE)
## [1] 1044   19
liver.ASE.symbol <- unique(liver.ASE$geneID)
liver.ASE.symbol <- unique(sub.liver.ASE$geneID)
length(liver.ASE.symbol)
## [1] 367
head(liver.ASE.symbol)
## [1] Rrs1          6330578E17Rik Aox3          Cps1          Ugt1a10      
## [6] Heatr7b1     
## 440 Levels: 0610010D20Rik 1100001G20Rik 1100001H23Rik ... Zfp180
library(biomaRt)
mouse = useMart("ensembl", dataset = "mmusculus_gene_ensembl")
liver.ASE.ensembl <- getBM( attributes=c("ensembl_gene_id", "mgi_symbol") , filters=
         "mgi_symbol"    , values =liver.ASE.symbol ,mart=mouse)

dim(liver.ASE.ensembl)
## [1] 327   2
length(unique(liver.ASE.ensembl$ensembl_gene_id))
## [1] 327
new.result.df2.rho1 <- new.result.df2[new.result.df2$rho.class == 21, ]
head(new.result.df2.rho1)
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 22019 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 22020 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 22021 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 22022 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 22023 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 22024 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho           tmm           tau
## 22019           2.0960974 0.2036947  1.241706e+25  1.204424e+23
## 22020           2.7653413 0.2036947  1.049501e+19  1.017989e+17
## 22021           1.1814994 0.2036947  3.305866e+44  3.206608e+42
## 22022           0.2321777 0.2036947 3.536116e+226 3.429944e+224
## 22023           1.5218109 0.2036947  3.662360e+34  3.552397e+32
## 22024           1.2292565 0.2036947  6.161600e+42  5.976597e+40
##              omega  beta_tieda n.betas.tieda.se p.below.0 rho.class
## 22019 5.897436e-45 0.015986111       0.13751641 0.4537277        21
## 22020 1.171687e-45 0.016880682       2.07432714 0.4967535        21
## 22021 1.459826e-45 0.003865079       0.06841849 0.4774750        21
## 22022 5.704352e-46 0.042233333       1.44735324 0.4883606        21
## 22023 2.435468e-44 0.063604072       0.27945646 0.4099789        21
## 22024 1.513739e-45 0.025611111       2.35774553 0.4956666        21
new.result.df2.rho1$rank.p.below.0 <- rank(new.result.df2.rho1$p.below.0)
new.result.df2.rho1$rank.liver.pvalue <- rank(new.result.df2.rho1$liver_pvalue)
result.rho1 <- matrix(, nrow(new.result.df2.rho1), 8)
colnames(result.rho1)<-c("bayrank","bayover","bay_TPR","bay_FPR", "orirank","oriover","ori_TPR","ori_FPR" )
for (i in 1:nrow(new.result.df2.rho1))
{
  newdata1.rho1 <- subset(new.result.df2.rho1, rank.p.below.0 <= i)
  overlap.newdata1.rho1 <- newdata1.rho1[newdata1.rho1$ensembl_id %in% liver.ASE.ensembl$ensembl_gene_id, ] 
  result.rho1[i, 1] <- i
  result.rho1[i, 2] <- nrow(overlap.newdata1.rho1)/nrow(newdata1.rho1)
  result.rho1[i, 3] <- nrow(overlap.newdata1.rho1)/nrow(liver.ASE.ensembl)

  
  newdata2.rho1 <- subset(new.result.df2.rho1, rank.liver.pvalue <= i)
  overlap.newdata2.rho1 <- newdata2.rho1[newdata2.rho1$ensembl_id %in% liver.ASE.ensembl$ensembl_gene_id, ] 
  result.rho1[i, 5] <- i
  result.rho1[i, 6] <- nrow(overlap.newdata2.rho1)/nrow(newdata2.rho1)
  result.rho1[i, 7] <- nrow(overlap.newdata2.rho1)/nrow(liver.ASE.ensembl)
}  
  
head(result.rho1)
##      bayrank   bayover     bay_TPR bay_FPR orirank   oriover     ori_TPR
## [1,]       1 0.0000000 0.000000000      NA       1 0.0000000 0.000000000
## [2,]       2 0.5000000 0.003058104      NA       2 0.5000000 0.003058104
## [3,]       3 0.3333333 0.003058104      NA       3 0.6666667 0.006116208
## [4,]       4 0.2500000 0.003058104      NA       4 0.5000000 0.006116208
## [5,]       5 0.2000000 0.003058104      NA       5 0.4000000 0.006116208
## [6,]       6 0.1666667 0.003058104      NA       6 0.5000000 0.009174312
##      ori_FPR
## [1,]      NA
## [2,]      NA
## [3,]      NA
## [4,]      NA
## [5,]      NA
## [6,]      NA
plot(result.rho1[, 1], result.rho1[, 3], type="l", col="red",  xlab="Ranking", ylab="TPR", ylim=c(0, 1), xlim=c(0, 1800) )
par(new=TRUE)
plot( result.rho1[, 1], result.rho1[, 7], type="l", col="green", xlab="Ranking", ylab="TPR", ylim=c(0, 1), xlim=c(0, 1800) )
legend("topright", inset=.05, c("Bayesian","Original"), text.col = c("red", "green"), horiz=TRUE)

qplot(omega, 1-p.below.0, group=rho.class, colour = rho.class, shape=rho.class,  data = new.result.df2)
qplot(omega, beta_tieda, group=rho.class, colour = rho.class, shape=rho.class,  data = new.result.df2)

qplot(betas.hat, beta_tieda, group=rho.class, colour = rho.class, shape=rho.class,  data = new.result.df2)

qplot(neg_log_lung_pvalue, data = new.result.df2)
qplot(exp(-neg_log_lung_pvalue), data = new.result.df2)