Solow Swan, Cobb-Douglas function
Find expressions for \(k^*\),\(y^*\) and \(c^*\)
\(Y_t=K^\alpha_t(A_tL_t)^{1-\alpha}\)
\(A_{t+1} \equiv (1+g)A_t\), technological growth
\(L_{t+1} \equiv (1+n)L_t\), labour force growth
\(K_{t+1} = (1-\delta)K_t + I_t\), \(I_t = S_t\), \(S_t = sY_t\) capital accumulation \(\therefore K_{t+1} = (1-\delta)K_t + sY_t\)
\(C_t = (1-s)Y_t\)
\(y_{t} = \frac{Y_{t}}{AL} , k_{t} = \frac{K_{t}}{AL}\), per effective unit of labour
\(\frac{Y_{t}}{A_tL_t} = \frac{K_{t}^\alpha (A_{t}L_{t})^{1 - \alpha}}{A_tL_t}\)
\(y_{t} = K_{t}^\alpha (A_{t}L_{t})^{- \alpha}\)
\(y_{t} = k_{t}^\alpha\)
Capital Accumulation in market clearing
\(K_{t+1} = (1 - \delta)K_{t} + sY_{t}\) , \(S_t = I_t\)
\(K_{t+1} = (1-\delta)K_t + s(K_t^\alpha(A_tL_t)^{1-\alpha})\)
\(\frac{K_{t+1}}{A_{t}L_{t}}\) = \(\frac{K_{t+1}}{A_{t+1}L_{t+1}}\) \(\times\) \(\frac{A_{t+1}L_{t+1}}{A_{t}L_{t}}\) , recall \(A_{t+1} \equiv (1+g)A_t\) and \(L_{t+1} \equiv (1+n)L_t\)
\(\frac{K_{t+1}}{A_{t}L_{t}}\) = \(\frac{K_{t+1}}{A_{t+1}L_{t+1}}\) \(\times\) \(\frac{(1+g)A_{t}(1+n)L_{t}}{A_{t}L_{t}}\) , cancel out \(A_t\) and \(L_t\)
\(\frac{K_{t+1}}{A_{t}L_{t}}\) = \(\frac{K_{t+1}}{A_{t+1}L_{t+1}}\) \(\times\) \((1+g)(1+n)\)
\(k_{t+1} = (1+g)(1+n)k_{t+1}\)
\(k_{t+1} = \frac{(1-\delta)}{(1+n)(1+g)}k_t + \frac{s}{(1+n)(1+g)}f(k_t) \equiv g(k_t)\)
Steady State
Capital
\(k^* = g(k^*)\)
\(k^* = \frac{(1-\delta)}{(1+n)(1+g)}k^* + \frac{s}{(1+n)(1+g)}f(k^*)\)
\([(1+n)(1+g)-(1-\delta)]k^* = sf(k^*)\)
\((n+g+ng+\delta)k^* = sf(k^*)\) , \(ng \approx 0\)
\(\therefore (n+g+\delta)k^* = sf(k^*)\)
\(sk_t^\alpha = (n+g+\delta)k_t\)
\(k^* = (\frac{s}{n+g+\delta})^\frac{1}{1-\alpha}\)
Output
\(y^* = k^{*\alpha}\), recall \(k^* = (\frac{s}{n+g+\delta})^\frac{1}{1-\alpha}\)
\(\therefore k^{*\alpha} = ((\frac{s}{n+g+\delta})^\frac{1}{1-\alpha})^\alpha\)
\(y^* = ((\frac{s}{n+g+\delta})^\frac{1}{1-\alpha})^\alpha\)
\(y^* = (\frac{s}{n+g+\delta})^\frac{\alpha}{1-\alpha}\)
Consumption
\(C_t = (1-s)Y_t\)
\(c^* = y_t - sy_t\), recall \(y_t = k^\alpha _t\) and \(sf(k^*) = (n+g+\delta)k^*\) in steady state
\(c^* = k^{*\alpha}_t - (n+g+\delta)k^*\)
Golden Rule
\(c^* = f(k^*) - sf(k^*)\)
\(c^* = f(k^*) - (n+g+\delta)k^*\)
\(c^* = k^{*\alpha}_t - (n+g+\delta)k^*\)
\(\frac{\partial c^*}{\partial k^*} = \alpha k^{*\alpha -1} - (n+g+\delta) = 0\), set to zero to maximise
\(\alpha k_{GR}^{\alpha -1} = n+g+\delta\)
\(k_{GR}^{\alpha -1} = \frac{n+g+\delta}{\alpha}\)
\(k_{GR} = (\frac{n+g+\delta}{\alpha})^{\frac{1}{\alpha -1}}\)
Golden Rule Saving
\(c = k^\alpha - sk(n+g+\delta)\)
\(\frac{\partial c}{\partial k} = \alpha k^{\alpha -1} - s(n+g+\delta)\)
\(\alpha k^{\alpha -1} - s(n+g+\delta) = 0\)
\(\alpha \frac{k^\alpha}{k} = s(n+g+\delta)\)
\(\alpha k^\alpha = sk(n+g+\delta)\) , recall \((n+g+\delta)k^* = sf(k^*)\)
\(\alpha k^\alpha = sk^\alpha\), cancel out \(k^\alpha\)
\(s = \alpha\)
The Rate of technological progress rises
A higher technological progress rate shifts \((n+g+\delta)k\) increasing the steady state of capital and resulting in higher outputs.
The saving rate rises
A higher saving rate shifts \(sf(k)\) upwards increasing the steady state of capital and resulting in higher outputs.
Cobb-Douglas Diamond Model \(g=0\)
\(Y_t = K^\alpha _t(A_tL_t^D)^{1-\alpha}\)
\(L_{t+1} = L_t(1+n)\), labour force growth
\(U(C_{1t},C_{2t+1}) =log(C_{1t})+\beta log(C_{2t+1})\)
Budget Constraints (pre-tax):
\(C_{1t} + S_t = W_tA_t\)
\(C_{2t+1} = (1+r_{t+1})S_t\)
Government taxes the young \(\tau\) and pays to old, so they receive \((1+n)\tau\)
\(U(C_{1t},C_{2t+1}) =log(C_{1t})+\beta log(C_{2t+1})\)
\(\frac{\partial U}{\partial S_t} = U_{1(C_{1t},C_{2t+1})}\frac{\partial C_{1t}}{\partial S_t} + U_{2(C_{1t},C_{2t+1})}\frac{\partial C_{2t+1}}{\partial S_t} = 0\)
\(\Rightarrow \frac{1}{(C_{1t})}(-1) + \frac{\beta 1}{C_{2t+1})}(1 + r_{t+1}) = 0\)
\(\Rightarrow \frac{C_{2t+1}}{C_{1t}} = \beta (1 + r_{t+1})\)
\(\Rightarrow \frac{(1 + r_{t+1})s_t + (1 + n)\tau }{w_t A_t – \tau – s_t} = \beta (1 + r_{t+1})\)
\(\Rightarrow (1 + r_{t+1})s_t + (1 + n)\tau = \beta (1 + r_{t+1})( w_t A_t – \tau – s_t)\)
\(\Rightarrow (1 + r_{t+1})s_t + (1 + n)\tau = \beta (1 + r_{t+1}) w_t A_t – \beta (1 + r_{t+1})\tau – \beta (1 + r_{t+1})s_t\)
\(\Rightarrow [(1 + r_{t+1})+ \beta (1 + r_{t+1})]s_t = \beta (1 + r_{t+1}) w_t A_t – \beta (1 + r_{t+1})\tau – (1 + n)\tau\)
\(\Rightarrow s_t = \frac{\beta (1 + r_{t+1} ) w_t A_t – \beta (1 + r_{t+1} )\tau -(1 + n)\tau }{(1 + r_{t+1})+ \beta (1 + r_{t+1})}\)
\(\Rightarrow s_t = \frac{\beta (1 + r_{t+1}) w_t A_t – \tau (\beta r_{t+1}+ \beta -n-1)}{(1+\beta )(1 + r_{t+1})}\)
\(\frac{\partial S_t}{\partial \tau} = -\frac{\beta r_{t+1}+\beta -n-1}{(1+\beta)(1+r_{t+1})}\)
\(= -\frac{\beta}{1+ \beta}-\frac{1+n}{(1+\beta)(1+r_{t+1})}\), substitute for \(s_t\)
\(c_{1t} = w_tA_t – \tau – (\frac{\beta (1 + r_{t+1}) w_t A_t – \beta (1 + r_{t+1} )\tau -(1 + n)\tau }{(1+\beta )(1 + r_{t+1})})\)
\(c_{2t+1} = (1 + r_{t+1})(\frac{\beta (1 + r_{t+1}) w_t A_t – \beta (1 + r_{t+1})\tau -(1 + n)\tau }{(1+\beta )(1 + r_{t+1})})+ (1 + n)\tau\)
\(\frac{\partial c_{1t}}{\partial \tau} = – 1 – \frac{\partial s_t}{\partial \tau}\)
\(= – 1 – \frac{\beta }{(1+\beta )} – \frac{(1+n)}{(1+\beta )(1 + r_{t+1})}\)
\(\frac{\partial c_{2t+1}}{\partial \tau} = (1+n) + \frac{\partial s_t}{\partial \tau}\)
\(= (1+n) – \frac{\beta }{(1+\beta )} – \frac{(1+n)}{(1+\beta )(1 + r_{t+1})}\)
Tax \(\tau\) has a negative effect on private saving. If this is offset by social security is unknown.
\(k_{t+1}\) as a function of \(k_t\) is it bigger/smaller when social security is absent i.e if \(\tau = 0\)?
\(K_{t+1} = L_tS_t\)
\(k_{t+1} = \frac{K_{t+1}}{A_{t+1}L_{t+1}} = \frac{L_tS_t}{A_{t+1}L_{t+1}}\) ,recall \(A_{t+1} \equiv (1+g)A_t, L_{t+1} \equiv (1+n)L_t\) and \(g=0\)
\(= \frac{S_t}{(1+n)A_t}\)
\(S_t= \frac{\beta}{1+\beta}(W_tA_t-\tau) - \frac{(1+n)\tau}{(1+r_{t+1})(1+\beta)}\)
\(\Rightarrow k_{t+1} = \frac{\beta}{(1+\beta)(1+n)A_t}W_tA_t - \frac{\beta}{(1+\beta)(1+n)A_t}\tau - \frac{1+n}{(1+r_{t+1})(1+\beta)(1+n)A_t}\tau\)
\(= \frac{\beta}{(1+\beta)(1+n)}f(k_t) - f'(k_t)k_t - \frac{\beta \tau}{(1+\beta)(1+n)A+t} - \frac{\tau}{(1+r_{t+1})(1+\beta)A_t}\)
As \(r_{t+1} = f(k_{t+1})\)
\(\Rightarrow k_{t+1} = \frac{\beta}{(1+\beta)(1+n)}f(k_t)-f'(k_t)k_t - \frac{\beta \tau}{(1+\beta)(1+n)A_t} - \frac{\tau}{(1+r_{t+1})(1+\beta)A_t}\)
\(\Rightarrow k^* \downarrow\)
If \(k^* \leq k_{GR}\) then a marginal increase in \(\tau\) can be used to tax young individuals, discouraging saving and bringing capital down to the golden rule, and subsidise the old, like the pension or “pay-as-you-go-social-security”. This would make all individuals better off.
If \(k^* > k_{GR}\) then saving and capital is below the golden rule. Government can subsidise young individuals to encourage saving with a tax on the old. This would only make the younger generation better off.
Government taxes the young \(\tau\) and uses \(\tau\) to purchase capital. Old possess capital, so they receive \((1+r_{t+1})\tau\)
Effect of tax on saving
\(\frac{∂U}{∂s_t} = U1(c_{1t}, c_{2t+1}) \frac{∂c_{1t}}{∂s_t} + U2(c_{1t}, c_{2t+1}) \frac{∂c_{2t+1}}{∂s_t} = 0\)
\(\Rightarrow \frac{1}{C_{1t}}(-1) + \beta \frac{1}{C_{2t+1}}(1 + r_{t+1}) = 0\)
\(\Rightarrow \frac{C_{2t+1}}{C_{1t}} = \beta (1 + r_{t+1})\)
\(\Rightarrow \frac{(1 + r_{t+1})s_t + (1 + r_{t+1})\tau }{(w_t A_t – \tau – s_t)} = \beta (1 + r_{t+1})\)
\(\Rightarrow (1 + r_{t+1})s_t + (1 + n)\tau = \beta (1 + r_{t+1})( w_t A_t – \tau – s_t)\)
\(\Rightarrow (1 + r_{t+1})s_t + (1 + r_{t+1})\tau = \beta (1 + r_{t+1}) w_t A_t – \beta (1 + r_{t+1})\tau – \beta (1 + r_{t+1})s_t\)
\(\Rightarrow [(1 + r_{t+1})+ \beta (1 + r_{t+1})]s_t = \beta (1 + r_{t+1}) w_t A_t – \beta (1 + r_{t+1})\tau – (1 + r_{t+1})\tau\)
\(\Rightarrow s_t = \frac{\beta (1 + r_{t+1}) w_t A_t –(\beta -1)(1+ r_{t+1})\tau }{(1 + r_{t+1})+ \beta (1 + r_{t+1})}\)
\(\Rightarrow s_t = \frac{\beta (1 + r_{t+1} ) w_t A_t –(\beta -1)(1+ r_{t+1})\tau }{(1+\beta )(1 + r_{t+1})}\)
\(\frac{∂s_t}{∂\tau } = – \frac{(\beta -1)(1+r_{t+1})}{(1+\beta )(1 + r_{t+1})}\)
\(= – \frac{\beta }{1+\beta }\)
Tax \(\tau\) has a negative impact on private saving. The scale of the effect is determined by \(\beta\), the discount factor.
\(k_{t+1}\) as a function of \(k_t\) is it bigger/smaller when social security is absent i.e if \(\tau = 0\)?
\(K_{t+1} = L_tS_t\),subsituting for \(S_t\)
\(K_{t+1} = L_t\frac{\beta (1 + r_{t+1}) w_t A_t –(\beta -1)(1+ r_{t+1})\tau }{(1+\beta )(1 + r_{t+1} )}\), recall \(k_{t+1} = \frac{K_{t+1}}{A_tL_{t+1}}\)
Recall \(A_{t+1} \equiv (1+g)A_t, L_{t+1} \equiv (1+n)L_t\) and \(g=0\)
\(k_{t+1} = \frac{\beta (1 + r_(t+1) ) w_t –(\beta -1)(1+ r_{t+1})\tau }{(1+\beta )(1 + r_{t+1} )(1+n)}\)
\(= \frac{\beta w_t}{(1+\beta )(1+n)} - \frac{(\beta -1)(1+ r_{t+1})\tau }{(1+\beta )(1 + r_{t+1})(1+n)}\)
\(= \frac{\beta w_t}{(1+\beta )(1+n)} - \frac{(\beta -1)\tau }{(1+\beta )(1+n)}\), substitute for \(w_t\)
\(k_{t+1} = \frac{\beta (1-\alpha)k^\alpha}{(1+\beta )(1+n)} - \frac{(\beta -1)\tau }{(1+\beta )(1+n)}\)
Uncertain. Depends on the size of \(\tau\) and \(\beta\)
\(y_t = f(k_t) = \theta _tAk_t^\alpha\) where \(0 < \alpha < 1\) and \(\theta _t\) denotes a stochastic process with a known probability distribution.
\(g(k_{t+1},\theta _t) = k_{t+1} = \frac{1-\delta}{(1+n)(1+g)}k_t + \frac{s}{(1+n)(1+g)}\theta _tAk^\alpha _t\)
\(k_{ss} = (\frac{sA\theta _{ss}}{n+g+\delta})^{\frac{1}{1-\alpha}}\)
First Order Taylor Series Expansion
\(k_{t+1} = k_{ss} + g_{k_t}\)\((k_{ss},\theta _{ss})\)\((k_t - k_{ss})\) \(+ g_{\theta _t}(k_{ss},\theta _{ss})(\theta _t - \theta _{ss})\)
\(g_{kt} = \frac{\partial g}{\partial k_t} = \frac{(1+\delta)}{(1+n)(1+g)} + \frac{s\theta _tA_\alpha}{(1+n)(1+g)}k_t^{\alpha - 1}\)
\(g\theta _t = \frac{\partial g}{\partial \theta _t} = \frac{sA_{kt}^\alpha }{(1+n)(1+g)}\) , \(\theta _{ss} = E(\theta _t)\) , \(E(\theta _t) = 1\)
\(g(k_{ss},\theta _{ss}) = \frac{(1-\delta)}{(1+n)(1+g)} + \frac{s\theta _tA\alpha}{(1+n)(1+g)}k_{ss}^{\alpha -1}\)
#Assign the values
delta <- 0.0075
n <- 0.01
alpha <- 0.36
g <- 0
A <- rep(NA,200)
A[1] <- 3
L <- rep(NA, 200)
L[1] <- 100
for (t in 2:200){
A[t] <- A[t-1] + (1+g)*A[t]}
s <- 0.2
theta <- 1
taylor <- (1-delta)/((1+n)(1+g)) + (s*theta*A[t]*alpha)/((1+n)(1+g))