attach("data/North_Sea_Herring_2015.RData")
rbya <- fishvice::flstock_to_rbya(NSH)
library(dplyr)
sur <- fishvice::flindices_to_rbya(NSH.tun)
library(ggplot2)
obs <-
rbya %>%
select(year, age, oC, f) %>%
left_join(sur %>%
filter(sur == "HERAS") %>%
select(year, age, oU),
by = c("year", "age")) %>%
mutate(yc = year - age,
fproxy = oC/oU)
obs %>%
filter(age > 0, year >= 1989) %>%
ggplot(aes(year, fproxy)) +
geom_line() +
facet_wrap(~ age, scale = "free_y")
## Warning: Removed 1 rows containing missing values (geom_path).
obs %>%
filter(age > 0, year >= 1989, year < 2015) %>%
group_by(age) %>%
mutate(fproxy = fproxy - mean(fproxy),
f_analytical = f - mean(f)) %>%
select(year, age, f_analytical, fproxy) %>%
tidyr::gather(variable, value, -(year:age)) %>%
ggplot(aes(year, value, colour = variable)) +
geom_line() +
facet_wrap(~ age, scale = "free_y") +
labs(x = NULL, y = NULL, title = "SAM - What me worried?") +
theme(legend.position = c(0.9, 0.1))
One could reverse the question: Why do an analytical assessment to begin with?
rbya <-
rbya %>%
filter(year < max(year)) %>%
group_by(age) %>%
mutate(m.rel = m - mean(m)) %>%
ungroup()
ggplot(rbya) +
geom_line(aes(year, m, group = age)) +
expand_limits(y = 0)
rbya %>%
ggplot() +
geom_line(aes(year, m.rel, group = age)) +
expand_limits(y = 0)
pro <-
rbya %>%
fishvice::sam_process_error(plot_it = TRUE)
x <-
pro$rbya %>%
mutate(agegroups = ifelse(age == 0,"0",
ifelse(age == 1, "1", "2+")))
pro$rbya %>%
ggplot() +
geom_line(aes(year, m, group = age)) +
geom_line(aes(year, m+z.d, group = age), col = "red") +
geom_smooth(aes(year, m+z.d), span = 0.1) +
facet_wrap(~ age, scale = "free_y") +
labs(x = NULL, y = NULL, title = "Input M (black) and M + process error (red)")
pro$rbya %>%
filter(age > 1) %>%
ggplot() +
geom_line(aes(year, m, group = age)) +
geom_line(aes(year, m+z.d, group = age), col = "red") +
geom_smooth(aes(year, m+z.d), span = 0.1) +
labs(x = NULL, y = NULL, title = "Input M (black) and M + process error (red)")
d <-
pro$rbya %>%
select(year, age, z.d) %>%
left_join(rbya %>% select(year, age, m.rel))
## Joining by: c("year", "age")
p <-
d %>%
filter(age > 1) %>%
ggplot() +
geom_line(aes(year, m.rel, group = age), col = "red") +
geom_point(aes(year, z.d), col = "blue") +
geom_smooth(aes(year, z.d), span = 0.1) +
labs(x = NULL, y = NULL)
p
p + facet_wrap(~ age, scale = "free_y")