IPV and logTrailsA Regression Models

Trails A Regression Model 1

## Loading required package: Matrix
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ (Age + IPVstatus + Sex + PovStat)^4 + (Age |      HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 103.5 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.27421      
##           Age         0.00662  1.00
##  subclass (Intercept) 0.14108      
##  Residual             0.20312      
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                        (Intercept)                                 Age  
##                            3.53162                             0.02061  
##                         IPVstatus1                              SexMen  
##                           -0.00392                            -0.18138  
##                       PovStatBelow                      Age:IPVstatus1  
##                           -0.01420                             0.00338  
##                         Age:SexMen                    Age:PovStatBelow  
##                           -0.01396                            -0.01079  
##                  IPVstatus1:SexMen             IPVstatus1:PovStatBelow  
##                            0.04364                             0.66546  
##                SexMen:PovStatBelow               Age:IPVstatus1:SexMen  
##                            0.35515                            -0.00607  
##        Age:IPVstatus1:PovStatBelow             Age:SexMen:PovStatBelow  
##                            0.07740                             0.02387  
##     IPVstatus1:SexMen:PovStatBelow  Age:IPVstatus1:SexMen:PovStatBelow  
##                           -0.40109                            -0.06114
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | subclass)   2.55      1        1  0.1101
## (1 | HNDid)     26.81      1     kept       0
## 
## Fixed effects:
##                           Sum Sq Mean Sq NumDF  DenDF F.value elim.num
## Age:IPVstatus:Sex:PovStat 0.0722  0.0722     1 109.93  1.7241        1
## IPVstatus:Sex:PovStat     0.0000  0.0000     1  56.04  0.0001        2
## Age:Sex:PovStat           0.0053  0.0053     1 107.15  0.1515        3
## Sex:PovStat               0.0488  0.0488     1  59.32  1.0868        4
## Age:IPVstatus:PovStat     0.0600  0.0600     1 111.44  1.3370        5
## IPVstatus:PovStat         0.0077  0.0077     1  57.34  0.4131        6
## Age:IPVstatus:Sex         0.0371  0.0371     1 108.84  0.8580        7
## Age:Sex                   0.0161  0.0161     1 108.88  0.4100        8
## IPVstatus:Sex             0.0300  0.0300     1  56.88  0.7868        9
## Sex                       0.0049  0.0049     1  58.63  0.0620       10
## Age:PovStat               0.0459  0.0459     1 105.01  1.2169       11
## Age:IPVstatus             0.1040  0.1040     1 110.91  2.5045       12
## IPVstatus                 0.0301  0.0301     1  59.40  0.7619       13
## PovStat                   0.1483  0.1483     1  61.40  3.6656       14
## Age                       0.9273  0.9273     1 111.16 22.2550     kept
##                           Pr(>F)
## Age:IPVstatus:Sex:PovStat 0.1919
## IPVstatus:Sex:PovStat     0.9906
## Age:Sex:PovStat           0.6979
## Sex:PovStat               0.3014
## Age:IPVstatus:PovStat     0.2500
## IPVstatus:PovStat         0.5229
## Age:IPVstatus:Sex         0.3563
## Age:Sex                   0.5233
## IPVstatus:Sex             0.3788
## Sex                       0.8042
## Age:PovStat               0.2725
## Age:IPVstatus             0.1164
## IPVstatus                 0.3862
## PovStat                   0.0602
## Age                            0
## 
## Least squares means:
##      Estimate Standard Error DF t-value Lower CI Upper CI p-value
## 
##  Differences of LSMEANS:
##      Estimate Standard Error DF t-value Lower CI Upper CI p-value
## 
## Final model:
## lme4::lmer(formula = log(TrailsAtestSec) ~ Age + (1 | HNDid), 
##     data = IPVandCognitionDataSet2, REML = reml, contrasts = l)

Re-run final Model 1

(mm1 = lmer(log(TrailsAtestSec) ~ Age + (Age | HNDid) + (1 | subclass), data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + (Age | HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 60.05 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.30701      
##           Age         0.00866  1.00
##  subclass (Intercept) 0.09158      
##  Residual             0.20512      
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
## (Intercept)          Age  
##      3.5571       0.0195

summary(mm1)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + (Age | HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## 
## REML criterion at convergence: 60.05 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 0.094257 0.30701      
##           Age         0.000075 0.00866  1.00
##  subclass (Intercept) 0.008388 0.09158      
##  Residual             0.042075 0.20512      
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)  3.55710    0.06137 22.10000   57.96  < 2e-16
## Age          0.01951    0.00497 57.10000    3.93  0.00024
## 
## Correlation of Fixed Effects:
##     (Intr)
## Age 0.758

plot(st)

plot(mm1)

plot of chunk unnamed-chunk-1

Trails A Regression Model 2 (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/IPVandCognitionDataSet2.rda")

library(lme4)
library(lmerTest)

(mm2 = lmer(log(TrailsAtestSec) ~ (Age + IPVstatus + PovStat + Sex + CESD)^5 + 
    (Age | HNDid) + (1 | subclass), data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ (Age + IPVstatus + PovStat + Sex + CESD)^5 +      (Age | HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 144.1 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.26494      
##           Age         0.00878  1.00
##  subclass (Intercept) 0.16323      
##  Residual             0.21282      
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                              (Intercept)  
##                                  3.43431  
##                                      Age  
##                                  0.01441  
##                               IPVstatus1  
##                                  0.02895  
##                             PovStatBelow  
##                                 -0.15222  
##                                   SexMen  
##                                 -0.14163  
##                                    CESD1  
##                                  0.17945  
##                           Age:IPVstatus1  
##                                  0.01084  
##                         Age:PovStatBelow  
##                                 -0.02233  
##                               Age:SexMen  
##                                 -0.01412  
##                                Age:CESD1  
##                                  0.01064  
##                  IPVstatus1:PovStatBelow  
##                                  1.90888  
##                        IPVstatus1:SexMen  
##                                 -0.27750  
##                         IPVstatus1:CESD1  
##                                 -0.04111  
##                      PovStatBelow:SexMen  
##                                  0.66266  
##                       PovStatBelow:CESD1  
##                                  0.16766  
##                             SexMen:CESD1  
##                                  0.04377  
##              Age:IPVstatus1:PovStatBelow  
##                                  0.15477  
##                    Age:IPVstatus1:SexMen  
##                                 -0.04316  
##                     Age:IPVstatus1:CESD1  
##                                 -0.01329  
##                  Age:PovStatBelow:SexMen  
##                                  0.04530  
##                   Age:PovStatBelow:CESD1  
##                                  0.01651  
##                         Age:SexMen:CESD1  
##                                  0.01161  
##           IPVstatus1:PovStatBelow:SexMen  
##                                 -1.41976  
##            IPVstatus1:PovStatBelow:CESD1  
##                                 -1.54552  
##                  IPVstatus1:SexMen:CESD1  
##                                  0.40837  
##                PovStatBelow:SexMen:CESD1  
##                                 -0.56160  
##       Age:IPVstatus1:PovStatBelow:SexMen  
##                                 -0.10434  
##        Age:IPVstatus1:PovStatBelow:CESD1  
##                                 -0.08623  
##              Age:IPVstatus1:SexMen:CESD1  
##                                  0.07104  
##            Age:PovStatBelow:SexMen:CESD1  
##                                 -0.03563  
##     IPVstatus1:PovStatBelow:SexMen:CESD1  
##                                  1.32016  
## Age:IPVstatus1:PovStatBelow:SexMen:CESD1  
##                                  0.00988

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | subclass)   3.59      1     kept  0.0582
## (1 | HNDid)      5.38      1     kept  0.0204
## 
## Fixed effects:
##                                Sum Sq Mean Sq NumDF  DenDF F.value
## Age:IPVstatus:PovStat:Sex:CESD 0.0017  0.0017     1  82.41  0.0370
## Age:PovStat:Sex:CESD           0.0427  0.0427     1  86.75  0.5412
## Age:IPVstatus:Sex:CESD         0.1400  0.1400     1  94.09  2.1142
## Age:Sex:CESD                   0.0105  0.0105     1  89.68  0.3874
## Age:IPVstatus:PovStat:CESD     0.0119  0.0119     1  92.48  1.4156
## Age:IPVstatus:CESD             0.0005  0.0005     1  89.21  0.1883
## Age:PovStat:CESD               0.0280  0.0280     1  94.21  0.1958
## Age:IPVstatus:PovStat:Sex      0.0397  0.0397     1  94.37  2.0738
## Age:PovStat:Sex                0.0120  0.0120     1  81.77  0.1476
## IPVstatus:PovStat:Sex:CESD     0.1190  0.1190     1  93.33  1.5429
## IPVstatus:Sex:CESD             0.0036  0.0036     1  99.16  0.0318
## IPVstatus:PovStat:Sex          0.0000  0.0000     1  55.88  0.0901
## IPVstatus:PovStat:CESD         0.0132  0.0132     1 104.72  0.2268
## PovStat:Sex:CESD               0.0028  0.0028     1 103.10  0.3610
## IPVstatus:CESD                 0.0282  0.0282     1 101.07  0.7134
## Sex:CESD                       0.0534  0.0534     1 105.60  1.0884
## PovStat:CESD                   0.0514  0.0514     1  96.28  1.5089
## Age:IPVstatus:Sex              0.0650  0.0650     1 101.73  1.6093
## IPVstatus:Sex                  0.0348  0.0348     1  48.69  0.2176
## Age:Sex                        0.0139  0.0139     1  81.53  1.1930
## Age:IPVstatus:PovStat          0.1152  0.1152     1 100.26  1.5780
## IPVstatus:PovStat              0.0137  0.0137     1  52.33  0.1550
## Age:PovStat                    0.0610  0.0610     1 105.19  0.1931
## PovStat:Sex                    0.0891  0.0891     1  46.96  2.3511
## Sex                            0.0209  0.0209     1  56.96  0.3610
## Age:CESD                       0.0690  0.0690     1 100.23  2.6387
## CESD                           0.0393  0.0393     1 116.65  0.5074
## Age:IPVstatus                  0.1579  0.1579     1  87.50  2.9113
## IPVstatus                      0.0441  0.0441     1  39.31  0.8055
## Age                            0.9350  0.9350     1  64.05 18.8016
## PovStat                        0.2612  0.2612     1  54.85  4.0815
##                                elim.num Pr(>F)
## Age:IPVstatus:PovStat:Sex:CESD        1 0.8480
## Age:PovStat:Sex:CESD                  2 0.4639
## Age:IPVstatus:Sex:CESD                3 0.1493
## Age:Sex:CESD                          4 0.5352
## Age:IPVstatus:PovStat:CESD            5 0.2372
## Age:IPVstatus:CESD                    6 0.6654
## Age:PovStat:CESD                      7 0.6592
## Age:IPVstatus:PovStat:Sex             8 0.1532
## Age:PovStat:Sex                       9 0.7018
## IPVstatus:PovStat:Sex:CESD           10 0.2173
## IPVstatus:Sex:CESD                   11 0.8589
## IPVstatus:PovStat:Sex                12 0.7652
## IPVstatus:PovStat:CESD               13 0.6349
## PovStat:Sex:CESD                     14 0.5493
## IPVstatus:CESD                       15 0.4003
## Sex:CESD                             16 0.2992
## PovStat:CESD                         17 0.2223
## Age:IPVstatus:Sex                    18 0.2075
## IPVstatus:Sex                        19 0.6429
## Age:Sex                              20 0.2779
## Age:IPVstatus:PovStat                21 0.2120
## IPVstatus:PovStat                    22 0.6954
## Age:PovStat                          23 0.6613
## PovStat:Sex                          24 0.1319
## Sex                                  25 0.5503
## Age:CESD                             26 0.1074
## CESD                                 27 0.4777
## Age:IPVstatus                        28 0.0915
## IPVstatus                            29 0.3749
## Age                                kept  1e-04
## PovStat                            kept 0.0482
## 
## Least squares means:
##                PovStat Estimate Standard Error   DF t-value Lower CI
## PovStat  Above     1.0   3.3683         0.0475 26.2 70.9000     3.27
## PovStat  Below     2.0   3.5312         0.0665 38.9 53.1000     3.40
##                Upper CI p-value
## PovStat  Above     3.47  <2e-16
## PovStat  Below     3.67  <2e-16
## 
##  Differences of LSMEANS:
##                     Estimate Standard Error   DF t-value Lower CI Upper CI
## PovStat Above-Below     -0.2         0.0806 54.8   -2.02   -0.324  -0.0013
##                     p-value
## PovStat Above-Below    0.05
## 
## Final model:
## lme4::lmer(formula = log(TrailsAtestSec) ~ Age + PovStat + (1 | 
##     subclass) + (1 | HNDid), data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run suggested final Model 2

(mm2 = lmer(log(TrailsAtestSec) ~ Age + PovStat + (Age | HNDid) + (1 | subclass), 
    data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + PovStat + (Age | HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 60 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.28847      
##           Age         0.00763  1.00
##  subclass (Intercept) 0.10581      
##  Residual             0.20492      
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##  (Intercept)           Age  PovStatBelow  
##        3.505         0.019         0.149

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + PovStat + (Age | HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## 
## REML criterion at convergence: 60 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 8.32e-02 0.28847      
##           Age         5.82e-05 0.00763  1.00
##  subclass (Intercept) 1.12e-02 0.10581      
##  Residual             4.20e-02 0.20492      
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##              Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)   3.50520    0.06760 32.10000   51.85  < 2e-16
## Age           0.01902    0.00496 62.60000    3.84  0.00029
## PovStatBelow  0.14932    0.08052 56.10000    1.85  0.06894
## 
## Correlation of Fixed Effects:
##             (Intr) Age   
## Age          0.702       
## PovStatBelw -0.445 -0.103

plot(st)

plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3


plot(mm2)

plot of chunk unnamed-chunk-3