03/11/2016
Presented by: Matthew Landowski
flatfile.txt
192.168.1.163:54321
192.168.1.164:54321
Star H2O nodes with flat file
java -Xmx20g -jar h2o.jar -flatfile flatfile.txt -port 54321
Recommend:
Easy to install package
# Install h2o package. Downloads latest version.
# Client and server need same h2o version installed.
install.packages("h2o")
library(h2o)
# can define max memory size, threads (cpus), etc
h2o.init(max_mem_size = 24, nthreads = 3)
# create h2o frame from R data frame
iris.h2o <- as.h2o(iris)
# Train a multinomial model on the training data
# x and y are vectors of column names or indices
fit <- h2o.gbm(x = 1:4, y = "Species", training_frame = iris.h2o)
# train deel learning model
model.dl <- h2o.deeplearning(2:784, 1, training_frame = h2o.train, nfolds = 10)
# make predictions
h2o.predictions <- h2o.predict(model.dl, h2o.test)
Model optimization avaible with a built-in grid search.
grid <- h2o.grid("gbm", x = c(1:4), y = 5, training_frame = iris.hex,
hyper_params = list(ntrees = c(1,2,3)))