Libraries MVA

uses MASS, Lattice

How we start to analyze the data is a large part determined by the Covariance , Correlations and Distances and Multivariate Normal Density Function. Gathering data of interest. Collecting observations of data for emperical inferential research.

hypo <-
  structure(list(individual = 1:10, sex = structure(c(2L, 2L, 2L,
    2L, 2L, 1L, 1L, 1L, 1L, 1L), .Label = c("Female", "Male"), class = "factor"),
    age = c(21L, 43L, 22L, 86L, 60L, 16L, NA, 43L, 22L, 80L),
    IQ = c(120L, NA, 135L, 150L, 92L, 130L, 150L, NA, 84L, 70L),
    depression = structure(c(2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
    1L, 1L), .Label = c("No", "Yes"), class = "factor"), health = structure(c(3L,
    3L, 1L, 4L, 2L, 2L, 3L, 1L, 1L, 2L), .Label = c("Average",
    "Good", "Very good", "Very poor"), class = "factor"), weight = c(150L,
    160L, 135L, 140L, 110L, 110L, 120L, 120L, 105L, 100L)), .Names = c("individual",
    "sex", "age", "IQ", "depression", "health", "weight"), class = "data.frame", row.names = c(NA, -10L))

# take a look
hypo
##    individual    sex age  IQ depression    health weight
## 1           1   Male  21 120        Yes Very good    150
## 2           2   Male  43  NA         No Very good    160
## 3           3   Male  22 135         No   Average    135
## 4           4   Male  86 150         No Very poor    140
## 5           5   Male  60  92        Yes      Good    110
## 6           6 Female  16 130        Yes      Good    110
## 7           7 Female  NA 150        Yes Very good    120
## 8           8 Female  43  NA        Yes   Average    120
## 9           9 Female  22  84         No   Average    105
## 10         10 Female  80  70         No      Good    100
str(hypo)
## 'data.frame':    10 obs. of  7 variables:
##  $ individual: int  1 2 3 4 5 6 7 8 9 10
##  $ sex       : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 1 1 1 1 1
##  $ age       : int  21 43 22 86 60 16 NA 43 22 80
##  $ IQ        : int  120 NA 135 150 92 130 150 NA 84 70
##  $ depression: Factor w/ 2 levels "No","Yes": 2 1 1 1 2 2 2 2 1 1
##  $ health    : Factor w/ 4 levels "Average","Good",..: 3 3 1 4 2 2 3 1 1 2
##  $ weight    : int  150 160 135 140 110 110 120 120 105 100

Age, IQ and Weight are the only numeric data ,everything else are factors.