Figure 1. Weight effect of rho

Weight effect of rho

Figure 2. Weight effect of lung P value

Weight effect of lung P value

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.4
library(reshape)
library(knitr)
library(xtable)
merged.mouse.eQTL.min.variance2<-read.table(file="2016-02-22-merged.mouse.eQTL.min.variance.txt",  header=T)
merged.mouse.eQTL.min.variance2$abs_liver.beta<-abs(merged.mouse.eQTL.min.variance2$liver.beta)
merged.mouse.eQTL.min.variance2$abs_lung.beta<-abs(merged.mouse.eQTL.min.variance2$lung.beta)
merged.mouse.eQTL.min.variance2$neg_log_lung_pvalue<--log(merged.mouse.eQTL.min.variance2$lung_pvalue)
merged.mouse.eQTL<-merged.mouse.eQTL.min.variance2
markers<-merged.mouse.eQTL[, 1]
# Yg=Ag + Bg*Xsnp+V
betas.hat<-abs(merged.mouse.eQTL[,2])
se<-(merged.mouse.eQTL[,3])
liver_residual_variance<-merged.mouse.eQTL[,4]
Z<-as.matrix(merged.mouse.eQTL[,10])
Z<-replace(Z,is.na(Z),0)
Z<-data.frame(1,Z) 
Z<-as.matrix(Z)
rowLength<-length(markers)
lmsummary<-summary(lm(abs_liver.beta~-1+Z, data=merged.mouse.eQTL))
tau<-lmsummary$sigma**2
tau
## [1] 0.009699749
gamma<-as.matrix(lmsummary$coefficients[,1])
Z_transpose<-t(Z)
identity<-diag(nrow=rowLength) 
betas.hat<-as.matrix(betas.hat)
V <- matrix(0, rowLength, rowLength)
diag(V) <-liver_residual_variance 
Tau<- diag(tau, rowLength, rowLength)
s<-V + Tau
diag.inverse <- function(x){diag(1/diag(x), nrow(x), ncol(x))}
diag.multi <- function(x,y){diag(diag(x)*diag(y), nrow(x), ncol(x))}
S <-diag.inverse(s)
omega<-diag.multi(S, V)
omega.diag<-diag(omega )
# betas.thea<- S %*% Z %*% gamma + (identity-S) %*% betas.hat
betas.tieda<- omega %*% Z %*% gamma + (identity-omega) %*% betas.hat
# crbetas.tieda<- cromega %*% Z %*% gamma + (identity-cromega) %*% betas.hat
regbeta <-Z %*% gamma
liver.mouse.eQTL.bayesian.4tau <- read.table(file="2016-03-15_liver.mouse.eQTL.bayesian.4tau.txt", head=TRUE)
liver.mouse.eQTL.bayesian.4tau$fzm <- -log10(exp(-liver.mouse.eQTL.bayesian.4tau$neg_log_lung_pvalue))
range(liver.mouse.eQTL.bayesian.4tau$fzm)
## [1] 8.678947e-16 1.727677e+01
liver.mouse.eQTL.bayesian.4tau$ratio_fzm <- max(liver.mouse.eQTL.bayesian.4tau$fzm)/liver.mouse.eQTL.bayesian.4tau$fzm

range(liver.mouse.eQTL.bayesian.4tau$ratio_fzm)
## [1] 1.000000e+00 1.990653e+16
rho.optimization <- matrix(0, nrow=nrow(liver.mouse.eQTL.bayesian.4tau), ncol=7)
colnames(rho.optimization)<-c("rho","tmm","tau", "omega","beta_tieda", "n.betas.tieda.se","p.below.0" )
nomega.diag<-diag(nomega )
rho <- seq(1,51, by=10)*tau
rho
result <- NULL
for (i in 1:length(rho))  {
  rho.optimization[ ,1] <- rho[i]
  rho.optimization[ ,2] <- (rho[i]/tau)^liver.mouse.eQTL.bayesian.4tau$ratio_fzm
  rho.optimization[ ,3] <-tau*((rho[i]/tau)^liver.mouse.eQTL.bayesian.4tau$ratio_fzm)
  nTau<- diag(rho.optimization[i,3], rowLength, rowLength)
  ns<-V + nTau
  nS <- diag.inverse(ns)
  nomega<-diag.multi(nS, V)
  rho.optimization[ ,4] <- diag(nomega )
  rho.optimization[ ,5] <-nomega %*% Z %*% gamma + (identity-nomega) %*% betas.hat
  nTau_invert<-diag.inverse(nTau)
  V_invert<-diag.inverse(V)
  nPS_invert<-nTau_invert+ diag.multi(diag.multi(V_invert, Z),  Z_transpose)
  nPS<-diag.inverse(nPS_invert)
  nps<-diag(nPS)
  nps.long <- melt(nps)
  rho.optimization[ ,6] <-(nps.long$value)^0.5
  rho.optimization[ ,7] <- pnorm(0, rho.optimization[ ,5], rho.optimization[ ,6])
  result <- rbind(result,rho.optimization)
}
  

result$p.below.0 <- pnorm(0, rho.optimization[ ,5], rho.optimization[ ,6])
write.table(result, file="2016-03-22_liver.mouse.eQTL.bayesian.result.txt",col.names=TRUE,row.names=FALSE,quote=FALSE)
liver.mouse.eQTL.bayesian.result <- read.table(file="2016-03-22_liver.mouse.eQTL.bayesian.result.txt",  header=T)
knitr::kable(head(liver.mouse.eQTL.bayesian.result))
rho tmm tau omega beta_tieda n.betas.tieda.se p.below.0
0.0096997 1 0.0096997 0.6609725 0.0335649 0.0800704 0.3375376
0.0096997 1 0.0096997 0.2791983 0.0236274 0.0983765 0.4050981
0.0096997 1 0.0096997 0.3255088 0.0140638 0.0561903 0.4011821
0.0096997 1 0.0096997 0.1586587 0.0416051 0.0982601 0.3359952
0.0096997 1 0.0096997 0.8895190 0.0401108 0.0928876 0.3329360
0.0096997 1 0.0096997 0.3335208 0.0306453 0.0984015 0.3777363
knitr::kable(tail(liver.mouse.eQTL.bayesian.result))
rho tmm tau omega beta_tieda n.betas.tieda.se p.below.0
66049 0.4946872 1.180091 0.0114466 0.6634209 0.0473521 0.1046325 0.3254342
66050 0.4946872 1.472411 0.0142820 0.3777155 0.0383391 0.0643198 0.2755646
66051 0.4946872 1.096974 0.0106404 0.3395461 0.0197970 0.1045669 0.4249194
66052 0.4946872 1.139850 0.0110563 0.5864554 0.0408051 0.0801457 0.3053284
66053 0.4946872 1.306410 0.0126718 0.4981594 0.0320585 0.1046096 0.3796280
66054 0.4946872 1.296591 0.0125766 0.6772621 0.0399182 0.0861273 0.3215104
result.df <-liver.mouse.eQTL.bayesian.result
result.df$rho.class <- factor(result.df$rho/tau)
a <-liver.mouse.eQTL.bayesian.4tau[, c(1:2, 6, 7, 9)]
a <-rbind(a, a, a, a, a,a)
dim(a)
## [1] 66054     5
new.result.df<-cbind(a, result.df)
knitr::kable(head(liver.mouse.eQTL.bayesian.4tau)) 
ensembl_id betas.hat betas.hat.se betas.tieda betas.tieda.se liver_residual_variance liver_pvalue abs_lung.beta neg_log_lung_pvalue p.below.0 betas.tieda2m betas.tieda3rd betas.tieda4max fzm ratio_fzm
ENSMUSG00000000001 0.0159861 0.0256247 0.0335649 0.0800559 0.0189108 0.5377718 0.0326900 2.0960974 0.3375098 0.0328346 0.0277012 0.0161111 0.9103235 18.97871
ENSMUSG00000000003 0.0168807 0.0126533 0.0236274 0.0520236 0.0037571 0.1929225 0.0295496 2.7653413 0.3248544 0.0230580 0.0201492 0.0169033 1.2009724 14.38565
ENSMUSG00000000037 0.0038651 0.0136293 0.0140638 0.0561845 0.0046811 0.7788138 0.0175948 1.1814994 0.4011720 0.0132541 0.0089752 0.0039017 0.5131187 33.67012
ENSMUSG00000000049 0.0422333 0.0078085 0.0416051 0.0392200 0.0018292 0.0000091 0.0238839 0.2321777 0.1443878 0.0416661 0.0419531 0.0422315 0.1008335 171.33960
ENSMUSG00000000056 0.0636041 0.0514812 0.0401108 0.0928852 0.0780959 0.2269175 0.0216750 1.5218109 0.3329319 0.0404380 0.0434054 0.0630989 0.6609141 26.14072
ENSMUSG00000000058 0.0256111 0.0129823 0.0306453 0.0568619 0.0048540 0.0584692 0.0288547 1.2292565 0.2949631 0.0302500 0.0281486 0.0256294 0.5338593 32.36202
new.result.df2 <- new.result.df
by(new.result.df2, new.result.df2[, "rho.class"], head)
## new.result.df2[, "rho.class"]: 1
##           ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 1 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 2 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 3 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 4 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 5 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 6 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##   neg_log_lung_pvalue         rho tmm         tau     omega beta_tieda
## 1           2.0960974 0.009699749   1 0.009699749 0.6609725 0.03356494
## 2           2.7653413 0.009699749   1 0.009699749 0.2791983 0.02362737
## 3           1.1814994 0.009699749   1 0.009699749 0.3255088 0.01406380
## 4           0.2321777 0.009699749   1 0.009699749 0.1586587 0.04160507
## 5           1.5218109 0.009699749   1 0.009699749 0.8895190 0.04011077
## 6           1.2292565 0.009699749   1 0.009699749 0.3335208 0.03064532
##   n.betas.tieda.se p.below.0 rho.class
## 1       0.08007039 0.3375376         1
## 2       0.09837648 0.4050981         1
## 3       0.05619033 0.4011821         1
## 4       0.09826008 0.3359952         1
## 5       0.09288763 0.3329360         1
## 6       0.09840149 0.3777363         1
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 11
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 11010 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 11011 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 11012 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 11013 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 11014 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 11015 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho      tmm         tau     omega
## 11010           2.0960974 0.1066972 1.134675 0.011006067 0.6226813
## 11011           2.7653413 0.1066972 1.181384 0.011459129 0.2469161
## 11012           1.1814994 0.1066972 1.073815 0.010415732 0.2900264
## 11013           0.2321777 0.1066972 1.014093 0.009836452 0.1376522
## 11014           1.5218109 0.1066972 1.096069 0.010631596 0.8720437
## 11015           1.2292565 0.1066972 1.076910 0.010445758 0.2975504
##       beta_tieda n.betas.tieda.se p.below.0 rho.class
## 11010 0.03254657       0.08447121 0.3500084        11
## 11011 0.02284729       0.10690506 0.4153844        11
## 11012 0.01295208       0.05764937 0.4111180        11
## 11013 0.04168825       0.10675573 0.3480830        11
## 11014 0.04057231       0.09996430 0.3424198        11
## 11015 0.03010237       0.10693716 0.3891650        11
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 21
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 22019 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 22020 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 22021 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 22022 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 22023 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 22024 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho      tmm         tau     omega
## 22019           2.0960974 0.2036947 1.174001 0.011387518 0.6404250
## 22020           2.7653413 0.2036947 1.235698 0.011985962 0.2613693
## 22021           1.1814994 0.2036947 1.094636 0.010617697 0.3059778
## 22022           0.2321777 0.2036947 1.017928 0.009873644 0.1469577
## 22023           1.5218109 0.2036947 1.123520 0.010897863 0.8803149
## 22024           1.2292565 0.2036947 1.098644 0.010656575 0.3137328
##       beta_tieda n.betas.tieda.se p.below.0 rho.class
## 22019 0.03301847       0.08246113 0.3444263        21
## 22020 0.02319654       0.10291531 0.4108362        21
## 22021 0.01345187       0.05699807 0.4067141        21
## 22022 0.04165140       0.10278206 0.3426506        21
## 22023 0.04035386       0.09667945 0.3381935        21
## 22024 0.03034663       0.10294394 0.3840779        21
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 31
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 33028 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 33029 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 33030 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 33031 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 33032 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 33033 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho      tmm         tau     omega
## 33028           2.0960974 0.3006922 1.198342 0.011623617 0.6564670
## 33029           2.7653413 0.3006922 1.269609 0.012314892 0.2751829
## 33030           1.1814994 0.3006922 1.107371 0.010741226 0.3211240
## 33031           0.2321777 0.3006922 1.020244 0.009896113 0.1560016
## 33032           1.5218109 0.3006922 1.140384 0.011061443 0.8875340
## 33033           1.2292565 0.3006922 1.111946 0.010785597 0.3290808
##       beta_tieda n.betas.tieda.se p.below.0 rho.class
## 33028 0.03344512       0.08060069 0.3390899        31
## 33029 0.02353034       0.09936501 0.4064032        31
## 33030 0.01392642       0.05637268 0.4024378        31
## 33031 0.04161559       0.09924506 0.3374906        31
## 33032 0.04016319       0.09371839 0.3341247        31
## 33033 0.03057830       0.09939078 0.3791716        31
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 41
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 44037 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 44038 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 44039 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 44040 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 44041 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 44042 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho      tmm         tau     omega
## 44037           2.0960974 0.3976897 1.216126 0.011796117 0.6284494
## 44038           2.7653413 0.3976897 1.294525 0.012556573 0.2515237
## 44039           1.1814994 0.3976897 1.116605 0.010830788 0.2951232
## 44040           0.2321777 0.3976897 1.021910 0.009912274 0.1406015
## 44041           1.5218109 0.3976897 1.152647 0.011180385 0.8747665
## 44042           1.2292565 0.3976897 1.121594 0.010879181 0.3027231
##       beta_tieda n.betas.tieda.se p.below.0 rho.class
## 44037 0.03269998       0.08382306 0.3482287        41
## 44038 0.02295863       0.10560023 0.4139441        41
## 44039 0.01311178       0.05744207 0.4097217        41
## 44040 0.04167657       0.10545630 0.3463468        41
## 44041 0.04050040       0.09889502 0.3410757        41
## 44042 0.03018045       0.10563117 0.3875481        41
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 51
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 55046 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 55047 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 55048 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 55049 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 55050 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 55051 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##       neg_log_lung_pvalue       rho      tmm         tau     omega
## 55046           2.0960974 0.4946872 1.230192 0.011932555 0.6332387
## 55047           2.7653413 0.4946872 1.314315 0.012748529 0.2554151
## 55048           1.1814994 0.4946872 1.123866 0.010901223 0.2994194
## 55049           0.2321777 0.4946872 1.023213 0.009924908 0.1431049
## 55050           1.5218109 0.4946872 1.162311 0.011274123 0.8770022
## 55051           1.2292565 0.4946872 1.129184 0.010952800 0.3070816
##       beta_tieda n.betas.tieda.se p.below.0 rho.class
## 55046 0.03282735       0.08328107 0.3467258        51
## 55047 0.02305266       0.10452268 0.4127207        51
## 55048 0.01324638       0.05726675 0.4085369        51
## 55049 0.04166666       0.10438310 0.3448838        51
## 55050 0.04044135       0.09800831 0.3399382        51
## 55051 0.03024624       0.10455267 0.3861790        51
by(new.result.df2, new.result.df2[, "rho.class"], summary)
## new.result.df2[, "rho.class"]: 1
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho              tmm   
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.0097   Min.   :1  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.0097   1st Qu.:1  
##  Median :0.21634   Median : 1.6936     Median :0.0097   Median :1  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.0097   Mean   :1  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.0097   3rd Qu.:1  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.0097   Max.   :1  
##                                                                    
##       tau             omega           beta_tieda       n.betas.tieda.se 
##  Min.   :0.0097   Min.   :0.09131   Min.   :0.004582   Min.   :0.02976  
##  1st Qu.:0.0097   1st Qu.:0.36400   1st Qu.:0.024829   1st Qu.:0.07093  
##  Median :0.0097   Median :0.52523   Median :0.035162   Median :0.09819  
##  Mean   :0.0097   Mean   :0.54385   Mean   :0.045850   Mean   :0.08474  
##  3rd Qu.:0.0097   3rd Qu.:0.70825   3rd Qu.:0.051346   3rd Qu.:0.09845  
##  Max.   :0.0097   Max.   :0.99758   Max.   :1.223416   Max.   :0.09849  
##                                                                         
##    p.below.0      rho.class 
##  Min.   :0.0000   1 :11009  
##  1st Qu.:0.2707   11:    0  
##  Median :0.3346   21:    0  
##  Mean   :0.3117   31:    0  
##  3rd Qu.:0.3794   41:    0  
##  Max.   :0.4779   51:    0  
##                             
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 11
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho              tmm        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.1067   Min.   : 1.000  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.1067   1st Qu.: 1.050  
##  Median :0.21634   Median : 1.6936     Median :0.1067   Median : 1.107  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.1067   Mean   : 1.233  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.1067   3rd Qu.: 1.238  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.1067   Max.   :11.000  
##                                                                         
##       tau              omega           beta_tieda       n.betas.tieda.se 
##  Min.   :0.00970   Min.   :0.07839   Min.   :0.004028   Min.   :0.02997  
##  1st Qu.:0.01018   1st Qu.:0.32635   1st Qu.:0.023889   1st Qu.:0.07394  
##  Median :0.01074   Median :0.48359   Median :0.034613   Median :0.10666  
##  Mean   :0.01196   Mean   :0.50969   Mean   :0.045565   Mean   :0.09073  
##  3rd Qu.:0.01201   3rd Qu.:0.67266   3rd Qu.:0.051252   3rd Qu.:0.10700  
##  Max.   :0.10670   Max.   :0.99715   Max.   :1.266254   Max.   :0.10705  
##                                                                          
##    p.below.0      rho.class 
##  Min.   :0.0000   1 :    0  
##  1st Qu.:0.2837   11:11009  
##  Median :0.3461   21:    0  
##  Mean   :0.3232   31:    0  
##  3rd Qu.:0.3905   41:    0  
##  Max.   :0.4816   51:    0  
##                             
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 21
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho              tmm        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.2037   Min.   : 1.000  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.2037   1st Qu.: 1.064  
##  Median :0.21634   Median : 1.6936     Median :0.2037   Median : 1.138  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.2037   Mean   : 1.323  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.2037   3rd Qu.: 1.311  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.2037   Max.   :21.000  
##                                                                         
##       tau              omega           beta_tieda       n.betas.tieda.se 
##  Min.   :0.00970   Min.   :0.08408   Min.   :0.004274   Min.   :0.02988  
##  1st Qu.:0.01032   1st Qu.:0.34334   1st Qu.:0.024329   1st Qu.:0.07258  
##  Median :0.01104   Median :0.50265   Median :0.034861   Median :0.10270  
##  Mean   :0.01283   Mean   :0.52532   Mean   :0.045688   Mean   :0.08794  
##  3rd Qu.:0.01272   3rd Qu.:0.68922   3rd Qu.:0.051270   3rd Qu.:0.10300  
##  Max.   :0.20369   Max.   :0.99736   Max.   :1.246068   Max.   :0.10304  
##                                                                          
##    p.below.0      rho.class 
##  Min.   :0.0000   1 :    0  
##  1st Qu.:0.2778   11:    0  
##  Median :0.3409   21:11009  
##  Mean   :0.3181   31:    0  
##  3rd Qu.:0.3856   41:    0  
##  Max.   :0.4800   51:    0  
##                             
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 31
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho              tmm        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.3007   Min.   : 1.000  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.3007   1st Qu.: 1.072  
##  Median :0.21634   Median : 1.6936     Median :0.3007   Median : 1.157  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.3007   Mean   : 1.386  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.3007   3rd Qu.: 1.358  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.3007   Max.   :31.000  
##                                                                         
##       tau              omega           beta_tieda       n.betas.tieda.se 
##  Min.   :0.00970   Min.   :0.08966   Min.   :0.004512   Min.   :0.02979  
##  1st Qu.:0.01040   1st Qu.:0.35938   1st Qu.:0.024718   1st Qu.:0.07130  
##  Median :0.01123   Median :0.52023   Median :0.035112   Median :0.09917  
##  Mean   :0.01344   Mean   :0.53974   Mean   :0.045813   Mean   :0.08544  
##  3rd Qu.:0.01317   3rd Qu.:0.70410   3rd Qu.:0.051296   3rd Qu.:0.09944  
##  Max.   :0.30069   Max.   :0.99753   Max.   :1.228319   Max.   :0.09948  
##                                                                          
##    p.below.0      rho.class 
##  Min.   :0.0000   1 :    0  
##  1st Qu.:0.2724   11:    0  
##  Median :0.3360   21:    0  
##  Mean   :0.3132   31:11009  
##  3rd Qu.:0.3809   41:    0  
##  Max.   :0.4784   51:    0  
##                             
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 41
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho              tmm        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.3977   Min.   : 1.000  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.3977   1st Qu.: 1.078  
##  Median :0.21634   Median : 1.6936     Median :0.3977   Median : 1.171  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.3977   Mean   : 1.436  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.3977   3rd Qu.: 1.392  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.3977   Max.   :41.000  
##                                                                         
##       tau              omega           beta_tieda       n.betas.tieda.se 
##  Min.   :0.00970   Min.   :0.08019   Min.   :0.004106   Min.   :0.02994  
##  1st Qu.:0.01046   1st Qu.:0.33179   1st Qu.:0.024027   1st Qu.:0.07350  
##  Median :0.01136   Median :0.48974   Median :0.034684   Median :0.10537  
##  Mean   :0.01393   Mean   :0.51474   Mean   :0.045603   Mean   :0.08982  
##  3rd Qu.:0.01350   3rd Qu.:0.67806   3rd Qu.:0.051232   3rd Qu.:0.10569  
##  Max.   :0.39769   Max.   :0.99722   Max.   :1.259626   Max.   :0.10574  
##                                                                          
##    p.below.0      rho.class 
##  Min.   :0.0000   1 :    0  
##  1st Qu.:0.2818   11:    0  
##  Median :0.3445   21:    0  
##  Mean   :0.3216   31:    0  
##  3rd Qu.:0.3891   41:11009  
##  Max.   :0.4811   51:    0  
##                             
## -------------------------------------------------------- 
## new.result.df2[, "rho.class"]: 51
##               ensembl_id      betas.hat       liver_residual_variance
##  ENSMUSG00000000001:    1   Min.   :0.00000   Min.   :0.000975       
##  ENSMUSG00000000003:    1   1st Qu.:0.01186   1st Qu.:0.005551       
##  ENSMUSG00000000037:    1   Median :0.02430   Median :0.010731       
##  ENSMUSG00000000049:    1   Mean   :0.05436   Mean   :0.029009       
##  ENSMUSG00000000056:    1   3rd Qu.:0.05360   3rd Qu.:0.023547       
##  ENSMUSG00000000058:    1   Max.   :2.76340   Max.   :4.004622       
##  (Other)           :11003                                            
##   liver_pvalue     neg_log_lung_pvalue      rho              tmm        
##  Min.   :0.00000   Min.   : 0.0000     Min.   :0.4947   Min.   : 1.000  
##  1st Qu.:0.03867   1st Qu.: 0.8062     1st Qu.:0.4947   1st Qu.: 1.083  
##  Median :0.21634   Median : 1.6936     Median :0.4947   Median : 1.182  
##  Mean   :0.29881   Mean   : 2.9708     Mean   :0.4947   Mean   : 1.478  
##  3rd Qu.:0.50673   3rd Qu.: 3.5428     3rd Qu.:0.4947   3rd Qu.: 1.419  
##  Max.   :1.00000   Max.   :39.7812     Max.   :0.4947   Max.   :51.000  
##                                                                         
##       tau              omega           beta_tieda       n.betas.tieda.se 
##  Min.   :0.00970   Min.   :0.08172   Min.   :0.004172   Min.   :0.02992  
##  1st Qu.:0.01050   1st Qu.:0.33637   1st Qu.:0.024136   1st Qu.:0.07314  
##  Median :0.01147   Median :0.49488   Median :0.034764   Median :0.10430  
##  Mean   :0.01433   Mean   :0.51895   Mean   :0.045636   Mean   :0.08907  
##  3rd Qu.:0.01377   3rd Qu.:0.68253   3rd Qu.:0.051227   3rd Qu.:0.10461  
##  Max.   :0.49469   Max.   :0.99727   Max.   :1.254172   Max.   :0.10466  
##                                                                          
##    p.below.0      rho.class 
##  Min.   :0.0000   1 :    0  
##  1st Qu.:0.2804   11:    0  
##  Median :0.3431   21:    0  
##  Mean   :0.3202   31:    0  
##  3rd Qu.:0.3878   41:    0  
##  Max.   :0.4806   51:11009  
## 

```

qplot(omega, 1-p.below.0, group=rho.class, colour = rho.class, shape=rho.class,  data = new.result.df)
qplot(omega, beta_tieda, group=rho.class, colour = rho.class, shape=rho.class,  data = new.result.df)

qplot(betas.hat, beta_tieda, group=rho.class, colour = rho.class, shape=rho.class,  data = new.result.df)

qplot(neg_log_lung_pvalue,tmm, group=rho.class, colour = rho.class, shape=rho.class,  data = new.result.df)

qplot(neg_log_lung_pvalue, data = new.result.df)
qplot(exp(-neg_log_lung_pvalue), data = new.result.df)
qplot(tmm, group=rho.class,  data = new.result.df)

sorted.new.result.df2 <- new.result.df2[order(new.result.df2$rho.class, new.result.df2$neg_log_lung_pvalue),]
by(sorted.new.result.df2[c(1, 2,5, 10)], sorted.new.result.df2[, "rho.class"], tail)
## sorted.new.result.df2[, "rho.class"]: 1
##              ensembl_id   betas.hat neg_log_lung_pvalue beta_tieda
## 4868 ENSMUSG00000028656 1.064626984            29.46768  0.7888386
## 8589 ENSMUSG00000044827 0.043061086            29.63010  0.1112840
## 8658 ENSMUSG00000045594 0.272539683            29.80771  0.1810885
## 1614 ENSMUSG00000020022 0.581488038            30.48351  0.2558550
## 993  ENSMUSG00000011884 0.003957014            32.50629  0.1357632
## 8387 ENSMUSG00000042684 0.058696429            39.78123  0.1519445
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 11
##               ensembl_id   betas.hat neg_log_lung_pvalue beta_tieda
## 15877 ENSMUSG00000028656 1.064626984            29.46768  0.8050848
## 19598 ENSMUSG00000044827 0.043061086            29.63010  0.1030722
## 19667 ENSMUSG00000045594 0.272539683            29.80771  0.1849379
## 12623 ENSMUSG00000020022 0.581488038            30.48351  0.2645083
## 12002 ENSMUSG00000011884 0.003957014            32.50629  0.1287301
## 19396 ENSMUSG00000042684 0.058696429            39.78123  0.1418963
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 21
##               ensembl_id   betas.hat neg_log_lung_pvalue beta_tieda
## 26886 ENSMUSG00000028656 1.064626984            29.46768  0.7975607
## 30607 ENSMUSG00000044827 0.043061086            29.63010  0.1067378
## 30676 ENSMUSG00000045594 0.272539683            29.80771  0.1831382
## 23632 ENSMUSG00000020022 0.581488038            30.48351  0.2604279
## 23011 ENSMUSG00000011884 0.003957014            32.50629  0.1319977
## 30405 ENSMUSG00000042684 0.058696429            39.78123  0.1464170
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 31
##               ensembl_id   betas.hat neg_log_lung_pvalue beta_tieda
## 37895 ENSMUSG00000028656 1.064626984            29.46768  0.7907520
## 41616 ENSMUSG00000044827 0.043061086            29.63010  0.1102577
## 41685 ENSMUSG00000045594 0.272539683            29.80771  0.1815348
## 34641 ENSMUSG00000020022 0.581488038            30.48351  0.2568441
## 34020 ENSMUSG00000011884 0.003957014            32.50629  0.1349392
## 41414 ENSMUSG00000042684 0.058696429            39.78123  0.1507043
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 41
##               ensembl_id   betas.hat neg_log_lung_pvalue beta_tieda
## 48904 ENSMUSG00000028656 1.064626984            29.46768  0.8026397
## 52625 ENSMUSG00000044827 0.043061086            29.63010  0.1042388
## 52694 ENSMUSG00000045594 0.272539683            29.80771  0.1843498
## 45650 ENSMUSG00000020022 0.581488038            30.48351  0.2631681
## 45029 ENSMUSG00000011884 0.003957014            32.50629  0.1297939
## 52423 ENSMUSG00000042684 0.058696429            39.78123  0.1433414
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 51
##               ensembl_id   betas.hat neg_log_lung_pvalue beta_tieda
## 59913 ENSMUSG00000028656 1.064626984            29.46768  0.8006089
## 63634 ENSMUSG00000044827 0.043061086            29.63010  0.1052256
## 63703 ENSMUSG00000045594 0.272539683            29.80771  0.1838637
## 56659 ENSMUSG00000020022 0.581488038            30.48351  0.2620655
## 56038 ENSMUSG00000011884 0.003957014            32.50629  0.1306761
## 63432 ENSMUSG00000042684 0.058696429            39.78123  0.1445590
by(sorted.new.result.df2, sorted.new.result.df2[, "rho.class"], tail)
## sorted.new.result.df2[, "rho.class"]: 1
##              ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 4868 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 8589 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 8658 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 1614 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 993  ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 8387 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##      neg_log_lung_pvalue         rho tmm         tau     omega beta_tieda
## 4868            29.46768 0.009699749   1 0.009699749 0.6548994  0.7888386
## 8589            29.63010 0.009699749   1 0.009699749 0.2455859  0.1112840
## 8658            29.80771 0.009699749   1 0.009699749 0.7577397  0.1810885
## 1614            30.48351 0.009699749   1 0.009699749 0.8494937  0.2558550
## 993             32.50629 0.009699749   1 0.009699749 0.6892381  0.1357632
## 8387            39.78123 0.009699749   1 0.009699749 0.3341640  0.1519445
##      n.betas.tieda.se    p.below.0 rho.class
## 4868       0.09846466 5.671021e-16         1
## 8589       0.04880698 1.130136e-02         1
## 8658       0.09847356 3.296088e-02         1
## 1614       0.09847969 4.687769e-03         1
## 993        0.08176452 4.841523e-02         1
## 8387       0.05693248 3.805517e-03         1
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 11
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 15877 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 19598 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 19667 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 12623 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 12002 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 19396 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho       tmm        tau     omega
## 15877            29.46768 0.1066972  5.907512 0.05730139 0.6163203
## 19598            29.63010 0.1066972  5.965634 0.05786515 0.2160253
## 19667            29.80771 0.1066972  6.029842 0.05848796 0.7258445
## 12623            30.48351 0.1066972  6.280542 0.06091968 0.8269193
## 12002            32.50629 0.1066972  7.094953 0.06881926 0.6524606
## 19396            39.78123 0.1066972 11.000000 0.10669724 0.2981552
##       beta_tieda n.betas.tieda.se    p.below.0 rho.class
## 15877  0.8050848       0.10701824 2.679227e-14        11
## 19598  0.1030722       0.04975401 1.914972e-02        11
## 19667  0.1849379       0.10702967 4.200197e-02        11
## 12623  0.2645083       0.10703754 6.733524e-03        11
## 12002  0.1287301       0.08646751 6.827413e-02        11
## 19396  0.1418963       0.05845168 7.599903e-03        11
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 21
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 26886 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 30607 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 30676 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 23632 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 23011 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 30405 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho       tmm        tau     omega
## 26886            29.46768 0.2036947  9.537292 0.09250934 0.6341874
## 30607            29.63010 0.2036947  9.656586 0.09366647 0.2292207
## 30676            29.80771 0.2036947  9.788739 0.09494832 0.7407567
## 23632            30.48351 0.2036947 10.308336 0.09998828 0.8375640
## 23011            32.50629 0.2036947 12.034287 0.11672956 0.6695471
## 30405            39.78123 0.2036947 21.000000 0.20369474 0.3143557
##       beta_tieda n.betas.tieda.se    p.below.0 rho.class
## 26886  0.7975607       0.10301627 4.889969e-15        21
## 30607  0.1067378       0.04933352 1.524767e-02        21
## 30676  0.1831382       0.10302647 3.773614e-02        21
## 23632  0.2604279       0.10303349 5.742178e-03        21
## 23011  0.1319977       0.08431517 5.872972e-02        21
## 30405  0.1464170       0.05777312 5.632883e-03        21
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 31
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 37895 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 41616 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 41685 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 34641 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 34020 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 41414 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho      tmm       tau     omega
## 37895            29.46768 0.3006922 12.72671 0.1234459 0.6503558
## 41616            29.63010 0.3006922 12.90641 0.1251889 0.2418916
## 41685            29.80771 0.3006922 13.10580 0.1271230 0.7540416
## 34641            30.48351 0.3006922 13.89309 0.1347595 0.8469133
## 34020            32.50629 0.3006922 16.54364 0.1604692 0.6849291
## 41414            39.78123 0.3006922 31.00000 0.3006922 0.3297196
##       beta_tieda n.betas.tieda.se    p.below.0 rho.class
## 37895  0.7907520       0.09945587 9.266838e-16        31
## 41616  0.1102577       0.04892634 1.211238e-02        31
## 41685  0.1815348       0.09946504 3.399210e-02        31
## 34641  0.2568441       0.09947136 4.910183e-03        31
## 34020  0.1349392       0.08232943 5.060501e-02        31
## 41414  0.1507043       0.05712217 4.166380e-03        31
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 41
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 48904 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 52625 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 52694 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 45650 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 45029 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 52423 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho      tmm       tau     omega
## 48904            29.46768 0.3976897 15.65521 0.1518516 0.6221267
## 52625            29.63010 0.3976897 15.89439 0.1541716 0.2202250
## 52694            29.80771 0.3976897 16.16010 0.1567489 0.7307176
## 45650            30.48351 0.3976897 17.21242 0.1669562 0.8304155
## 45029            32.50629 0.3976897 20.78971 0.2016549 0.6580235
## 52423            39.78123 0.3976897 41.00000 0.3976897 0.3033338
##       beta_tieda n.betas.tieda.se    p.below.0 rho.class
## 48904  0.8026397       0.10570931 1.564178e-14        41
## 52625  0.1042388       0.04962057 1.783283e-02        41
## 52694  0.1843498       0.10572033 4.060140e-02        41
## 45650  0.2631681       0.10572791 6.403213e-03        41
## 45029  0.1297939       0.08577270 6.511044e-02        41
## 52423  0.1433414       0.05823563 6.919729e-03        41
## -------------------------------------------------------- 
## sorted.new.result.df2[, "rho.class"]: 51
##               ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 59913 ENSMUSG00000028656 1.064626984             0.018407266 4.552986e-26
## 63634 ENSMUSG00000044827 0.043061086             0.003157578 2.733728e-04
## 63703 ENSMUSG00000045594 0.272539683             0.030338790 1.481601e-08
## 56659 ENSMUSG00000020022 0.581488038             0.054747720 1.767689e-13
## 56038 ENSMUSG00000011884 0.003957014             0.021513047 8.846174e-01
## 63432 ENSMUSG00000042684 0.058696429             0.004868026 8.328277e-05
##       neg_log_lung_pvalue       rho      tmm       tau     omega
## 59913            29.46768 0.4946872 18.40226 0.1784973 0.6269491
## 63634            29.63010 0.4946872 18.70006 0.1813859 0.2237770
## 63703            29.80771 0.4946872 19.03122 0.1845981 0.7347450
## 56659            30.48351 0.4946872 20.34580 0.1973492 0.8332920
## 56038            32.50629 0.4946872 24.84853 0.2410245 0.6626363
## 63432            39.78123 0.4946872 51.00000 0.4946872 0.3076973
##       beta_tieda n.betas.tieda.se    p.below.0 rho.class
## 59913  0.8006089       0.10462845 9.899718e-15        51
## 63634  0.1052256       0.04950742 1.677452e-02        51
## 63703  0.1838637       0.10463913 3.944853e-02        51
## 56659  0.2620655       0.10464648 6.134815e-03        51
## 56038  0.1306761       0.08519227 6.252764e-02        51
## 63432  0.1445590       0.05805297 6.384946e-03        51
liver.ASE <- read.csv(file= "ASE.genetics.113.153882-6.csv")
liver.ASE.symbol <- unique(liver.ASE$geneID)
length(liver.ASE.symbol)
## [1] 440
#liver.ASE <-liver.ASE[liver.ASE$geneID %in% names(table(liver.ASE$geneID))[table(liver.ASE$geneID) >=2], ]
sub.liver.ASE <-liver.ASE[which(liver.ASE$pvalBH.DxB7 < 0.05 & liver.ASE$pvalBH.BxD7 < 0.05), ]

dim(sub.liver.ASE)
## [1] 1044   19
liver.ASE.symbol <- unique(liver.ASE$geneID)
liver.ASE.symbol <- unique(sub.liver.ASE$geneID)
length(liver.ASE.symbol)
## [1] 367
head(liver.ASE.symbol)
## [1] Rrs1          6330578E17Rik Aox3          Cps1          Ugt1a10      
## [6] Heatr7b1     
## 440 Levels: 0610010D20Rik 1100001G20Rik 1100001H23Rik ... Zfp180
library(biomaRt)
mouse = useMart("ensembl", dataset = "mmusculus_gene_ensembl")
liver.ASE.ensembl <- getBM( attributes=c("ensembl_gene_id", "mgi_symbol") , filters=
         "mgi_symbol"    , values =liver.ASE.symbol ,mart=mouse)

dim(liver.ASE.ensembl)
## [1] 327   2
length(unique(liver.ASE.ensembl$ensembl_gene_id))
## [1] 327
new.result.df2.rho1 <- new.result.df2[new.result.df2$rho.class == 1, ]
head(new.result.df2.rho1)
##           ensembl_id   betas.hat liver_residual_variance liver_pvalue
## 1 ENSMUSG00000000001 0.015986111             0.018910763 5.377718e-01
## 2 ENSMUSG00000000003 0.016880682             0.003757142 1.929225e-01
## 3 ENSMUSG00000000037 0.003865079             0.004681090 7.788138e-01
## 4 ENSMUSG00000000049 0.042233333             0.001829162 9.084753e-06
## 5 ENSMUSG00000000056 0.063604072             0.078095912 2.269175e-01
## 6 ENSMUSG00000000058 0.025611111             0.004853968 5.846922e-02
##   neg_log_lung_pvalue         rho tmm         tau     omega beta_tieda
## 1           2.0960974 0.009699749   1 0.009699749 0.6609725 0.03356494
## 2           2.7653413 0.009699749   1 0.009699749 0.2791983 0.02362737
## 3           1.1814994 0.009699749   1 0.009699749 0.3255088 0.01406380
## 4           0.2321777 0.009699749   1 0.009699749 0.1586587 0.04160507
## 5           1.5218109 0.009699749   1 0.009699749 0.8895190 0.04011077
## 6           1.2292565 0.009699749   1 0.009699749 0.3335208 0.03064532
##   n.betas.tieda.se p.below.0 rho.class
## 1       0.08007039 0.3375376         1
## 2       0.09837648 0.4050981         1
## 3       0.05619033 0.4011821         1
## 4       0.09826008 0.3359952         1
## 5       0.09288763 0.3329360         1
## 6       0.09840149 0.3777363         1
new.result.df2.rho1$rank.p.below.0 <- rank(new.result.df2.rho1$p.below.0)
new.result.df2.rho1$rank.liver.pvalue <- rank(new.result.df2.rho1$liver_pvalue)
result.rho1 <- matrix(, nrow(new.result.df2.rho1), 8)
colnames(result.rho1)<-c("bayrank","bayover","bay_TPR","bay_FPR", "orirank","oriover","ori_TPR","ori_FPR" )
for (i in 1:nrow(new.result.df2.rho1))
{
  newdata1.rho1 <- subset(new.result.df2.rho1, rank.p.below.0 <= i)
  overlap.newdata1.rho1 <- newdata1.rho1[newdata1.rho1$ensembl_id %in% liver.ASE.ensembl$ensembl_gene_id, ] 
  result.rho1[i, 1] <- i
  result.rho1[i, 2] <- nrow(overlap.newdata1.rho1)/nrow(newdata1.rho1)
  result.rho1[i, 3] <- nrow(overlap.newdata1.rho1)/nrow(liver.ASE.ensembl)

  
  newdata2.rho1 <- subset(new.result.df2.rho1, rank.liver.pvalue <= i)
  overlap.newdata2.rho1 <- newdata2.rho1[newdata2.rho1$ensembl_id %in% liver.ASE.ensembl$ensembl_gene_id, ] 
  result.rho1[i, 5] <- i
  result.rho1[i, 6] <- nrow(overlap.newdata2.rho1)/nrow(newdata2.rho1)
  result.rho1[i, 7] <- nrow(overlap.newdata2.rho1)/nrow(liver.ASE.ensembl)
}  
  
head(result.rho1)
##      bayrank   bayover     bay_TPR bay_FPR orirank   oriover     ori_TPR
## [1,]       1 0.0000000 0.000000000      NA       1 0.0000000 0.000000000
## [2,]       2 0.5000000 0.003058104      NA       2 0.5000000 0.003058104
## [3,]       3 0.3333333 0.003058104      NA       3 0.6666667 0.006116208
## [4,]       4 0.2500000 0.003058104      NA       4 0.5000000 0.006116208
## [5,]       5 0.4000000 0.006116208      NA       5 0.4000000 0.006116208
## [6,]       6 0.3333333 0.006116208      NA       6 0.5000000 0.009174312
##      ori_FPR
## [1,]      NA
## [2,]      NA
## [3,]      NA
## [4,]      NA
## [5,]      NA
## [6,]      NA
tail(result.rho1)
##          bayrank    bayover   bay_TPR bay_FPR orirank    oriover   ori_TPR
## [11004,]   11004 0.02417303 0.8134557      NA   11004 0.02417303 0.8134557
## [11005,]   11005 0.02417083 0.8134557      NA   11005 0.02417083 0.8134557
## [11006,]   11006 0.02416864 0.8134557      NA   11006 0.02416864 0.8134557
## [11007,]   11007 0.02416644 0.8134557      NA   11007 0.02416644 0.8134557
## [11008,]   11008 0.02416424 0.8134557      NA   11008 0.02416424 0.8134557
## [11009,]   11009 0.02416205 0.8134557      NA   11009 0.02416205 0.8134557
##          ori_FPR
## [11004,]      NA
## [11005,]      NA
## [11006,]      NA
## [11007,]      NA
## [11008,]      NA
## [11009,]      NA
plot(result.rho1[, 1], result.rho1[, 3], type="l", col="red",  xlab="Ranking", ylab="TPR", ylim=c(0, 1), xlim=c(0, 1800) )
par(new=TRUE)
plot( result.rho1[, 1], result.rho1[, 7], type="l", col="green", xlab="Ranking", ylab="TPR", ylim=c(0, 1), xlim=c(0, 1800) )
legend("topright", inset=.05, c("Bayesian","Original"), text.col = c("red", "green"), horiz=TRUE)

plot(result[, 1], result[, 2], type=“l”, col=“red”, xlab=“Ranking”, ylab=“Percent of true positive”, ylim=c(0, 1))

par(new=TRUE)

plot(result[, 5], result[, 6], type=“l”, col=“green”, xlab=“Ranking”, ylab=“Percent of true positive”, ylim=c(0, 1))

legend(“topright”, inset=.05, c(“Bayesian”,“Original”), text.col = c(“red”, “green”), horiz=TRUE)