Adam Ingwersen, GQR701
January 28, 2016
After observing a surge in social media attention after the recent Paris attacks, 13th of November 2015, we wondered which factors determine web-based media coverage and indiviudal response of such incidents - and what determines the pervasiveness of interest from media and user alike
We started out trying to explore the relationship between the media response of real life events and characteristics herof
Specifally, our group set out to try and determine factors influencing the decline in media attention - we chose to use the term “decay rate”
packagesused = c("MASS", "ggplot2", "plyr", "sandwich", "lmtest", "readr", "tidyr",
"lubridate", "dplyr", "stringr", "readr", "rpart", "rpart.plot",
"class", "countrycode", "rvest", "maps", "countrycode")
lapply(packagesused, library, character.only =TRUE)## Start: AIC=812.01
## decay ~ Injuried + Category + Region + Dead
##
## Df Sum of Sq RSS AIC
## - Region 3 191.101 20052 807.61
## - Category 1 4.592 19865 810.05
## - Dead 1 86.342 19947 810.74
## - Injuried 1 134.117 19995 811.13
## <none> 19861 812.01
##
## Step: AIC=807.61
## decay ~ Injuried + Category + Dead
##
## Df Sum of Sq RSS AIC
## - Dead 1 59.294 20111 806.10
## - Category 1 61.338 20113 806.12
## - Injuried 1 207.317 20259 807.33
## <none> 20052 807.61
##
## Step: AIC=806.1
## decay ~ Injuried + Category
##
## Df Sum of Sq RSS AIC
## - Category 1 49.64 20161 804.51
## <none> 20111 806.10
## - Injuried 1 532.73 20644 808.47
##
## Step: AIC=804.51
## decay ~ Injuried
##
## Df Sum of Sq RSS AIC
## <none> 20161 804.51
## - Injuried 1 497.64 20658 806.59
##
## Call:
## lm(formula = decay ~ Injuried, data = newdf)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.021 -7.921 1.916 5.579 39.556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.64533 0.92048 -7.219 1.53e-11 ***
## Injuried -0.02709 0.00949 -2.855 0.00483 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.02 on 175 degrees of freedom
## (228 observations deleted due to missingness)
## Multiple R-squared: 0.04449, Adjusted R-squared: 0.03903
## F-statistic: 8.149 on 1 and 175 DF, p-value: 0.00483
##
## Call:
## lm(formula = increase ~ Region + Category, data = newdf)
##
## Residuals:
## Min 1Q Median 3Q Max
## -49.312 -15.816 -5.222 14.590 68.778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.026 17.458 0.861 0.3904
## RegionAsia -3.188 3.378 -0.944 0.3463
## RegionEurope 12.902 6.239 2.068 0.0398 *
## RegionNorth America 14.590 16.280 0.896 0.3711
## RegionSouth America 7.812 25.131 0.311 0.7562
## CategoryNatural disasters 11.162 20.157 0.554 0.5803
## CategoryTerrorism 6.385 17.267 0.370 0.7119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.73 on 216 degrees of freedom
## (182 observations deleted due to missingness)
## Multiple R-squared: 0.04477, Adjusted R-squared: 0.01823
## F-statistic: 1.687 on 6 and 216 DF, p-value: 0.1253