set.seed(1)
t = rnorm(100, 100)
t1 = t + rnorm(100, 0, 0.5)
t2 = t + rnorm(100, 0, 0.5)
n = rnorm(100, 99)
n1 = n + rnorm(100, 0, 0.2)
n2 = n + rnorm(100, 0, 0.2)
y = data.frame(cbind(n1, n2, t1, t2))
head(y)
## n1 n2 t1 t2
## 1 100.11 99.91 99.06 99.58
## 2 98.33 97.89 100.20 101.03
## 3 100.85 100.73 98.71 99.96
## 4 98.54 98.62 101.67 101.43
## 5 100.57 100.85 100.00 99.19
## 6 100.44 100.83 100.06 100.43
save(y, file = "y.rda")
load("y.rda")
write.table(y, file = "y.txt")
write.table(y, file = "y.txt", quote = F)
write.table(y, file = "y.txt", quote = F, sep = "\t")
write.table(y, file = "y.txt", quote = F, sep = "\t", row.names = F)
X = read.table("y.txt", header = T, sep = "\t")
hist(y$n1)
hist(y$n1, breaks = 5)
hist(y$n1, main = "normal", xlab = "n1")
plot(density(y$n1))
plot(y$n1, y$n2)
cor(y$n1, y$n2, method = "pearson")
## [1] 0.9512
cor.test(y$t1, y$t2, method = "pearson")
##
## Pearson's product-moment correlation
##
## data: y$t1 and y$t2
## t = 11.4, df = 98, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6560 0.8286
## sample estimates:
## cor
## 0.7551
cor.test(y$t1, y$n1, method = "pearson")
##
## Pearson's product-moment correlation
##
## data: y$t1 and y$n1
## t = -0.253, df = 98, p-value = 0.8008
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2209 0.1717
## sample estimates:
## cor
## -0.02555
cor(y)
## n1 n2 t1 t2
## n1 1.00000 0.95117 -0.02555 0.04334
## n2 0.95117 1.00000 -0.09278 -0.01098
## t1 -0.02555 -0.09278 1.00000 0.75510
## t2 0.04334 -0.01098 0.75510 1.00000
par(mfrow = c(2, 2))
plot(y$n1, y$n2)
plot(y$t1, y$t2)
plot(y$n1, y$t1)
plot(y$n1, y$t2)
par(mfrow = c(1, 1))
library(pheatmap)
pheatmap(y)
library(pheatmap)
pheatmap(cor(y), display_numbers = T)
colMeans(y)
## n1 n2 t1 t2
## 99.04 99.04 100.09 100.12
rowMeans(y)
## [1] 99.66 99.36 100.06 100.07 100.15 100.44 99.87 100.31 99.45 99.69
## [11] 100.53 99.73 99.10 97.78 100.10 100.19 99.20 99.73 99.32 100.16
## [21] 100.37 100.79 99.79 97.43 99.92 100.01 99.11 98.66 98.77 100.01
## [31] 99.74 98.31 99.42 100.01 98.79 99.41 99.87 99.32 99.93 99.63
## [41] 99.59 99.22 99.82 99.51 98.11 97.94 100.23 99.76 99.57 100.71
## [51] 100.58 99.54 99.72 98.59 100.91 100.76 98.46 98.83 98.62 99.52
## [61] 99.49 100.17 99.72 99.52 99.15 100.28 98.80 100.21 99.27 99.91
## [71] 99.71 99.31 99.38 99.32 98.38 99.76 99.20 99.89 99.38 100.29
## [81] 99.41 100.01 99.87 98.62 100.51 99.66 99.05 99.51 98.65 99.23
## [91] 99.75 100.62 100.59 99.88 100.39 99.19 99.91 99.15 98.64 99.53
n.rowm = rowMeans(y[, c("n1", "n2")])
t.rowm = rowMeans(y[, c("t1", "t2")])
abs.diff = abs(n.rowm - t.rowm)
abs.diff[1:10]
## [1] 0.6880 2.5038 1.4594 2.9737 1.1171 0.3883 1.9243 1.5885 2.4329 1.1009
idx = order(abs.diff, decreasing = T)[1:10]
e1 = data.frame(group = "n1", value = y[idx, "n1"])
e2 = data.frame(group = "t1", value = y[idx, "t1"])
boxplot(value ~ group, rbind(e1, e2))
pdf("boxplot.pdf", width = 5, height = 8)
boxplot(value ~ group, rbind(e1, e2))
dev.off()
## pdf
## 2