IPV and logTrailsA Regression Models Stratified by Gender

Trails A Regression Model 1 for Women Only

## Loading required package: Matrix
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ (Age + IPVstatus + PovStat)^3 + (Age |      HNDid) + (1 | subclass) 
##    Data: WomenlogTrailsA 
## REML criterion at convergence: 67.56 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.3355       
##           Age         0.0187   1.00
##  subclass (Intercept) 0.2156       
##  Residual             0.2262       
## Number of obs: 72, groups: HNDid, 36; subclass, 19
## Fixed Effects:
##                 (Intercept)                          Age  
##                    3.524032                     0.017918  
##                  IPVstatus1                 PovStatBelow  
##                   -0.001744                    -0.069160  
##              Age:IPVstatus1             Age:PovStatBelow  
##                   -0.000511                    -0.010751  
##     IPVstatus1:PovStatBelow  Age:IPVstatus1:PovStatBelow  
##                    0.683933                     0.079896
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | HNDid)      1.34      1        1  0.2474
## (1 | subclass)  11.97      1     kept  0.0005
## 
## Fixed effects:
##                       Sum Sq Mean Sq NumDF DenDF F.value elim.num Pr(>F)
## Age:IPVstatus:PovStat 0.2401  0.2401     1 63.43  3.3611        1 0.0714
## Age:IPVstatus         0.0050  0.0050     1 62.78  0.0483        2 0.8268
## IPVstatus:PovStat     0.0069  0.0069     1 65.84  0.0907        3 0.7642
## Age:PovStat           0.0040  0.0040     1 64.31  0.1056        4 0.7463
## PovStat               0.0048  0.0048     1 67.22  0.0284        5 0.8667
## IPVstatus             0.0123  0.0123     1 58.14  0.1740        6 0.6781
## Age                   0.8661  0.8661     1 60.07 12.6077     kept 0.0008
## 
## Least squares means:
##      Estimate Standard Error DF t-value Lower CI Upper CI p-value
## 
##  Differences of LSMEANS:
##      Estimate Standard Error DF t-value Lower CI Upper CI p-value
## 
## Final model:
## lme4::lmer(formula = log(TrailsAtestSec) ~ Age + (1 | subclass), 
##     data = WomenlogTrailsA, REML = reml, contrasts = l)

Re-run final Model 1

(mm1 = lmer(log(TrailsAtestSec) ~ Age + (Age | HNDid) + (1 | subclass), data = WomenlogTrailsA))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + (Age | HNDid) + (1 | subclass) 
##    Data: WomenlogTrailsA 
## REML criterion at convergence: 47.28 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.2718       
##           Age         0.0153   1.00
##  subclass (Intercept) 0.2158       
##  Residual             0.2334       
## Number of obs: 72, groups: HNDid, 36; subclass, 19
## Fixed Effects:
## (Intercept)          Age  
##      3.5469       0.0192

summary(mm1)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + (Age | HNDid) + (1 | subclass) 
##    Data: WomenlogTrailsA 
## 
## REML criterion at convergence: 47.28 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 0.073899 0.2718       
##           Age         0.000233 0.0153   1.00
##  subclass (Intercept) 0.046561 0.2158       
##  Residual             0.054481 0.2334       
## Number of obs: 72, groups: HNDid, 36; subclass, 19
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)  3.54689    0.09715 17.56000   36.51   <2e-16
## Age          0.01922    0.00733 27.73000    2.62    0.014
## 
## Correlation of Fixed Effects:
##     (Intr)
## Age 0.760

plot(st)

plot(mm1)

plot of chunk unnamed-chunk-1

Trails A Regression Model 2 for Women Only (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/WomenlogTrailsA.rda")

library(lme4)
library(lmerTest)

(mm2 = lmer(log(TrailsAtestSec) ~ (Age + IPVstatus + PovStat + CES1)^4 + (Age | 
    HNDid) + (1 | subclass), data = WomenlogTrailsA))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ (Age + IPVstatus + PovStat + CES1)^4 +      (Age | HNDid) + (1 | subclass) 
##    Data: WomenlogTrailsA 
## REML criterion at convergence: 79.23 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.3210       
##           Age         0.0194   1.00
##  subclass (Intercept) 0.2528       
##  Residual             0.2081       
## Number of obs: 72, groups: HNDid, 36; subclass, 19
## Fixed Effects:
##                       (Intercept)                                Age  
##                           3.34361                            0.00713  
##                        IPVstatus1                       PovStatBelow  
##                           0.48466                            0.03894  
##                             CES11                     Age:IPVstatus1  
##                           0.57356                            0.04702  
##                  Age:PovStatBelow                          Age:CES11  
##                          -0.00748                            0.03446  
##           IPVstatus1:PovStatBelow                   IPVstatus1:CES11  
##                           1.32961                           -1.09698  
##                PovStatBelow:CES11        Age:IPVstatus1:PovStatBelow  
##                          -0.49998                            0.11102  
##              Age:IPVstatus1:CES11             Age:PovStatBelow:CES11  
##                          -0.10494                           -0.02199  
##     IPVstatus1:PovStatBelow:CES11  Age:IPVstatus1:PovStatBelow:CES11  
##                          -0.22577                            0.01375

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | HNDid)      0.00      1        1   1e+00
## (1 | subclass)  14.79      1     kept   1e-04
## 
## Fixed effects:
##                            Sum Sq Mean Sq NumDF DenDF F.value elim.num
## Age:IPVstatus:PovStat:CES1 0.0018  0.0018     1 43.42  0.0313        1
## Age:PovStat:CES1           0.0349  0.0349     1 56.84  0.5779        2
## IPVstatus:PovStat:CES1     0.0458  0.0458     1 55.77  0.8762        3
## Age                        0.7939  0.7939     1 55.49 15.9484     kept
## IPVstatus                  0.0114  0.0114     1 52.02  6.7854     kept
## PovStat                    0.0165  0.0165     1 57.18  2.0943     kept
## CES1                       0.0469  0.0469     1 57.93  1.3719     kept
## Age:IPVstatus              0.0004  0.0004     1 51.21  6.3637     kept
## Age:PovStat                0.0115  0.0115     1 48.87  2.9951     kept
## Age:CES1                   0.0048  0.0048     1 58.95  1.5720     kept
## IPVstatus:PovStat          0.0113  0.0113     1 58.39 11.5130     kept
## IPVstatus:CES1             0.0430  0.0430     1 52.32 10.1216     kept
## PovStat:CES1               0.2029  0.2029     1 51.79  6.0791     kept
## Age:IPVstatus:PovStat      0.3743  0.3743     1 56.42  9.5752     kept
## Age:IPVstatus:CES1         0.4767  0.4767     1 48.77  8.4274     kept
##                            Pr(>F)
## Age:IPVstatus:PovStat:CES1 0.8604
## Age:PovStat:CES1           0.4503
## IPVstatus:PovStat:CES1     0.3533
## Age                        0.0002
## IPVstatus                  0.0120
## PovStat                    0.1533
## CES1                       0.2463
## Age:IPVstatus              0.0148
## Age:PovStat                0.0898
## Age:CES1                   0.2149
## IPVstatus:PovStat          0.0012
## IPVstatus:CES1             0.0025
## PovStat:CES1               0.0170
## Age:IPVstatus:PovStat      0.0031
## Age:IPVstatus:CES1         0.0055
## 
## Least squares means:
##                            IPVstatus PovStat CES1 Estimate Standard Error
## IPVstatus  0                     1.0      NA   NA   3.3944         0.0821
## IPVstatus  1                     2.0      NA   NA   3.4981         0.1000
## PovStat  Above                    NA     1.0   NA   3.4344         0.0827
## PovStat  Below                    NA     2.0   NA   3.4582         0.1043
## CES1  0                           NA      NA  1.0   3.4612         0.0957
## CES1  1                           NA      NA  2.0   3.4313         0.0973
## IPVstatus:PovStat  0 Above       1.0     1.0   NA   3.4778         0.0888
## IPVstatus:PovStat  1 Above       2.0     1.0   NA   3.3911         0.0970
## IPVstatus:PovStat  0 Below       1.0     2.0   NA   3.3111         0.1147
## IPVstatus:PovStat  1 Below       2.0     2.0   NA   3.6052         0.1512
## IPVstatus:CES1  0 0              1.0      NA  1.0   3.3363         0.0909
## IPVstatus:CES1  1 0              2.0      NA  1.0   3.5862         0.1361
## IPVstatus:CES1  0 1              1.0      NA  2.0   3.4526         0.1085
## IPVstatus:CES1  1 1              2.0      NA  2.0   3.4101         0.1119
## PovStat:CES1  Above 0             NA     1.0  1.0   3.3511         0.0972
## PovStat:CES1  Below 0             NA     2.0  1.0   3.5714         0.1360
## PovStat:CES1  Above 1             NA     1.0  2.0   3.5178         0.1028
## PovStat:CES1  Below 1             NA     2.0  2.0   3.3449         0.1219
##                              DF t-value Lower CI Upper CI p-value
## IPVstatus  0               16.1    41.3     3.22     3.57  <2e-16
## IPVstatus  1               30.8    35.0     3.29     3.70  <2e-16
## PovStat  Above             16.3    41.5     3.26     3.61  <2e-16
## PovStat  Below             30.3    33.2     3.25     3.67  <2e-16
## CES1  0                    26.7    36.2     3.26     3.66  <2e-16
## CES1  1                    24.3    35.3     3.23     3.63  <2e-16
## IPVstatus:PovStat  0 Above 20.2    39.2     3.29     3.66  <2e-16
## IPVstatus:PovStat  1 Above 29.1    35.0     3.19     3.59  <2e-16
## IPVstatus:PovStat  0 Below 30.4    28.9     3.08     3.55  <2e-16
## IPVstatus:PovStat  1 Below 54.8    23.8     3.30     3.91  <2e-16
## IPVstatus:CES1  0 0        20.6    36.7     3.15     3.53  <2e-16
## IPVstatus:CES1  1 0        51.2    26.3     3.31     3.86  <2e-16
## IPVstatus:CES1  0 1        32.3    31.8     3.23     3.67  <2e-16
## IPVstatus:CES1  1 1        39.0    30.5     3.18     3.64  <2e-16
## PovStat:CES1  Above 0      24.8    34.5     3.15     3.55  <2e-16
## PovStat:CES1  Below 0      47.4    26.3     3.30     3.85  <2e-16
## PovStat:CES1  Above 1      27.3    34.2     3.31     3.73  <2e-16
## PovStat:CES1  Below 1      44.2    27.4     3.10     3.59  <2e-16
## 
##  Differences of LSMEANS:
##                                     Estimate Standard Error   DF t-value
## IPVstatus 0-1                           -0.1         0.0884 54.2   -1.17
## PovStat Above-Below                      0.0         0.0988 59.0   -0.24
## CES1 0-1                                 0.0         0.1077 58.8    0.28
## IPVstatus:PovStat  0 Above- 1 Above      0.1         0.0848 48.4    1.02
## IPVstatus:PovStat  0 Above- 0 Below      0.2         0.1230 56.2    1.35
## IPVstatus:PovStat  0 Above- 1 Below     -0.1         0.1418 53.4   -0.90
## IPVstatus:PovStat  1 Above- 0 Below      0.1         0.1228 58.3    0.65
## IPVstatus:PovStat  1 Above- 1 Below     -0.2         0.1567 55.1   -1.37
## IPVstatus:PovStat  0 Below- 1 Below     -0.3         0.1691 57.8   -1.74
## IPVstatus:CES1  0 0- 1 0                -0.2         0.1304 56.9   -1.92
## IPVstatus:CES1  0 0- 0 1                -0.1         0.1144 59.0   -1.02
## IPVstatus:CES1  0 0- 1 1                -0.1         0.1168 58.3   -0.63
## IPVstatus:CES1  1 0- 0 1                 0.1         0.1586 57.1    0.84
## IPVstatus:CES1  1 0- 1 1                 0.2         0.1487 55.2    1.18
## IPVstatus:CES1  0 1- 1 1                 0.0         0.1033 44.9    0.41
## PovStat:CES1  Above 0- Below 0          -0.2         0.1389 59.0   -1.59
## PovStat:CES1  Above 0- Above 1          -0.2         0.1124 58.8   -1.48
## PovStat:CES1  Above 0- Below 1           0.0         0.1372 58.8    0.04
## PovStat:CES1  Below 0- Above 1           0.1         0.1545 58.9    0.35
## PovStat:CES1  Below 0- Below 1           0.2         0.1525 54.3    1.49
## PovStat:CES1  Above 1- Below 1           0.2         0.1139 50.4    1.52
##                                     Lower CI Upper CI p-value
## IPVstatus 0-1                        -0.2810   0.0735    0.25
## PovStat Above-Below                  -0.2215   0.1740    0.81
## CES1 0-1                             -0.1855   0.2453    0.78
## IPVstatus:PovStat  0 Above- 1 Above  -0.0839   0.2573    0.31
## IPVstatus:PovStat  0 Above- 0 Below  -0.0798   0.4131    0.18
## IPVstatus:PovStat  0 Above- 1 Below  -0.4118   0.1569    0.37
## IPVstatus:PovStat  1 Above- 0 Below  -0.1658   0.3257    0.52
## IPVstatus:PovStat  1 Above- 1 Below  -0.5281   0.0998    0.18
## IPVstatus:PovStat  0 Below- 1 Below  -0.6326   0.0444    0.09
## IPVstatus:CES1  0 0- 1 0             -0.5109   0.0111    0.06
## IPVstatus:CES1  0 0- 0 1             -0.3453   0.1127    0.31
## IPVstatus:CES1  0 0- 1 1             -0.3076   0.1600    0.53
## IPVstatus:CES1  1 0- 0 1             -0.1841   0.4513    0.40
## IPVstatus:CES1  1 0- 1 1             -0.1219   0.4741    0.24
## IPVstatus:CES1  0 1- 1 1             -0.1656   0.2506    0.68
## PovStat:CES1  Above 0- Below 0       -0.4982   0.0575    0.12
## PovStat:CES1  Above 0- Above 1       -0.3917   0.0582    0.14
## PovStat:CES1  Above 0- Below 1       -0.2685   0.2808    0.96
## PovStat:CES1  Below 0- Above 1       -0.2556   0.3629    0.73
## PovStat:CES1  Below 0- Below 1       -0.0792   0.5322    0.14
## PovStat:CES1  Above 1- Below 1       -0.0558   0.4016    0.14
## 
## Final model:
## lme4::lmer(formula = log(TrailsAtestSec) ~ Age + IPVstatus + 
##     PovStat + CES1 + (1 | subclass) + Age:IPVstatus + Age:PovStat + 
##     Age:CES1 + IPVstatus:PovStat + IPVstatus:CES1 + PovStat:CES1 + 
##     Age:IPVstatus:PovStat + Age:IPVstatus:CES1, data = WomenlogTrailsA, 
##     REML = reml, contrasts = l)

Re-run suggested final Model 2

(mm2 = lmer(log(TrailsAtestSec) ~ Age + IPVstatus + PovStat + CES1 + (Age | 
    HNDid) + (1 | subclass) + Age:IPVstatus + Age:PovStat + Age:CES1 + IPVstatus:PovStat + 
    IPVstatus:CES1 + PovStat:CES1 + Age:IPVstatus:PovStat + Age:IPVstatus:CES1, 
    data = WomenlogTrailsA, contrasts = 1))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + IPVstatus + PovStat + CES1 + (Age |      HNDid) + (1 | subclass) + Age:IPVstatus + Age:PovStat + Age:CES1 +      IPVstatus:PovStat + IPVstatus:CES1 + PovStat:CES1 + Age:IPVstatus:PovStat +      Age:IPVstatus:CES1 
##    Data: WomenlogTrailsA 
## REML criterion at convergence: 72.71 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.307        
##           Age         0.019    1.00
##  subclass (Intercept) 0.252        
##  Residual             0.206        
## Number of obs: 72, groups: HNDid, 36; subclass, 19
## Fixed Effects:
##                 (Intercept)                          Age  
##                      3.3549                       0.0108  
##                  IPVstatus1                 PovStatBelow  
##                      0.5179                      -0.0470  
##                       CES11               Age:IPVstatus1  
##                      0.5437                       0.0457  
##            Age:PovStatBelow                    Age:CES11  
##                     -0.0195                       0.0263  
##     IPVstatus1:PovStatBelow             IPVstatus1:CES11  
##                      1.1428                      -1.1419  
##          PovStatBelow:CES11  Age:IPVstatus1:PovStatBelow  
##                     -0.3517                       0.1122  
##        Age:IPVstatus1:CES11  
##                     -0.1001

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + IPVstatus + PovStat + CES1 + (Age |      HNDid) + (1 | subclass) + Age:IPVstatus + Age:PovStat + Age:CES1 +      IPVstatus:PovStat + IPVstatus:CES1 + PovStat:CES1 + Age:IPVstatus:PovStat +      Age:IPVstatus:CES1 
##    Data: WomenlogTrailsA 
## 
## REML criterion at convergence: 72.71 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 0.094021 0.307        
##           Age         0.000363 0.019    1.00
##  subclass (Intercept) 0.063744 0.252        
##  Residual             0.042422 0.206        
## Number of obs: 72, groups: HNDid, 36; subclass, 19
## 
## Fixed effects:
##                             Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)                   3.3549     0.1673 14.2000   20.05  8.1e-12
## Age                           0.0108     0.0124 16.3000    0.87   0.3949
## IPVstatus1                    0.5179     0.2980 19.3000    1.74   0.0981
## PovStatBelow                 -0.0470     0.2542 22.4000   -0.19   0.8549
## CES11                         0.5437     0.2359 15.9000    2.30   0.0350
## Age:IPVstatus1                0.0457     0.0253 32.4000    1.81   0.0796
## Age:PovStatBelow             -0.0195     0.0180 17.2000   -1.09   0.2924
## Age:CES11                     0.0263     0.0174 22.6000    1.51   0.1452
## IPVstatus1:PovStatBelow       1.1428     0.4827 26.9000    2.37   0.0254
## IPVstatus1:CES11             -1.1419     0.3943 18.5000   -2.90   0.0094
## PovStatBelow:CES11           -0.3517     0.1655 20.4000   -2.12   0.0460
## Age:IPVstatus1:PovStatBelow   0.1122     0.0427 41.3000    2.63   0.0119
## Age:IPVstatus1:CES11         -0.1001     0.0331 28.0000   -3.02   0.0053
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 PvSttB CES11  Ag:IPV1 Ag:PSB A:CES1
## Age          0.800                                                  
## IPVstatus1  -0.424 -0.384                                           
## PovStatBelw -0.413 -0.254  0.203                                    
## CES11       -0.497 -0.422  0.218 -0.086                             
## Ag:IPVstts1 -0.316 -0.340  0.904  0.157  0.165                      
## Ag:PvSttBlw -0.357 -0.407  0.176  0.833 -0.128  0.156               
## Age:CES11   -0.391 -0.535  0.201 -0.228  0.807  0.172  -0.145       
## IPVstt1:PSB  0.151  0.133 -0.226 -0.474  0.148 -0.200  -0.531  0.127
## IPVs1:CES11  0.249  0.219 -0.679  0.074 -0.545 -0.618   0.097 -0.457
## PvStB:CES11  0.087 -0.147  0.013 -0.247 -0.214 -0.011   0.054  0.111
## Ag:IPV1:PSB  0.082  0.125 -0.171 -0.330  0.111 -0.222  -0.483  0.095
## A:IPV1:CES1  0.184  0.186 -0.630  0.078 -0.446 -0.692   0.109 -0.423
##             IPV1:P IPV1:C PSB:CE A:IPV1:P
## Age                                      
## IPVstatus1                               
## PovStatBelw                              
## CES11                                    
## Ag:IPVstts1                              
## Ag:PvSttBlw                              
## Age:CES11                                
## IPVstt1:PSB                              
## IPVs1:CES11 -0.177                       
## PvStB:CES11 -0.216  0.062                
## Ag:IPV1:PSB  0.896 -0.146 -0.148         
## A:IPV1:CES1 -0.147  0.909  0.051 -0.123

plot(st)

plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3


plot(mm2)

plot of chunk unnamed-chunk-3

Trails A Regression Model 1 for Men Only

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/MenlogTrailsA.rda")

library(lme4)
library(lmerTest)

(mm1 = lmer(log(TrailsAtestSec) ~ (Age + IPVstatus + PovStat)^3 + (Age | HNDid) + 
    (1 | subclass), data = MenlogTrailsA))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ (Age + IPVstatus + PovStat)^3 + (Age |      HNDid) + (1 | subclass) 
##    Data: MenlogTrailsA 
## REML criterion at convergence: 27.03 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 2.95e-01     
##           Age         1.65e-02 0.60
##  subclass (Intercept) 8.80e-07     
##  Residual             1.33e-01     
## Number of obs: 54, groups: HNDid, 27; subclass, 17
## Fixed Effects:
##                 (Intercept)                          Age  
##                    3.409584                     0.012204  
##                  IPVstatus1                 PovStatBelow  
##                    0.037338                     0.217925  
##              Age:IPVstatus1             Age:PovStatBelow  
##                   -0.000739                     0.003319  
##     IPVstatus1:PovStatBelow  Age:IPVstatus1:PovStatBelow  
##                    0.230800                     0.011404

(st = step(mm1))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## 
## Random effects:
##                         Chi.sq Chi.DF elim.num p.value
## (1 | subclass)            0.06      1        1  0.8054
## (Age | HNDid)             0.11      1        2  0.7398
##       (Age + 0 | HNDid)   0.00      1        3  1.0000
##       (1 | HNDid)        16.97      1     kept       0
## 
## Fixed effects:
##                       Sum Sq Mean Sq NumDF DenDF F.value elim.num Pr(>F)
## Age:IPVstatus:PovStat 0.0001  0.0001     1 45.85  0.0034        1 0.9535
## Age:IPVstatus         0.0106  0.0106     1 46.80  0.0707        2 0.7914
## IPVstatus:PovStat     0.0059  0.0059     1 19.70  0.4822        3 0.4955
## Age:PovStat           0.0132  0.0132     1 48.87  0.9837        4 0.3262
## IPVstatus             0.0623  0.0623     1 23.95  1.5478        5 0.2255
## Age                   0.2653  0.2653     1 49.06  6.5204     kept 0.0138
## PovStat               0.1168  0.1168     1 28.12  6.5818     kept 0.0159
## 
## Least squares means:
##                PovStat Estimate Standard Error   DF t-value Lower CI
## PovStat  Above     1.0   3.3597         0.0672 25.9 50.0000     3.22
## PovStat  Below     2.0   3.6693         0.0968 27.0 37.9100     3.47
##                Upper CI p-value
## PovStat  Above     3.50  <2e-16
## PovStat  Below     3.87  <2e-16
## 
##  Differences of LSMEANS:
##                     Estimate Standard Error   DF t-value Lower CI Upper CI
## PovStat Above-Below     -0.3          0.121 28.1   -2.57   -0.557  -0.0624
##                     p-value
## PovStat Above-Below    0.02
## 
## Final model:
## lme4::lmer(formula = log(TrailsAtestSec) ~ Age + PovStat + (1 | 
##     HNDid), data = MenlogTrailsA, REML = reml, contrasts = l)

Re-run final Model 1

(mm1 = lmer(log(TrailsAtestSec) ~ Age + PovStat + (Age | HNDid) + (1 | subclass), 
    data = MenlogTrailsA))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + PovStat + (Age | HNDid) + (1 | subclass) 
##    Data: MenlogTrailsA 
## REML criterion at convergence: 6.663 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 3.06e-01     
##           Age         1.67e-02 0.65
##  subclass (Intercept) 5.96e-07     
##  Residual             1.23e-01     
## Number of obs: 54, groups: HNDid, 27; subclass, 17
## Fixed Effects:
##  (Intercept)           Age  PovStatBelow  
##       3.4471        0.0149        0.2674

summary(mm1)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + PovStat + (Age | HNDid) + (1 | subclass) 
##    Data: MenlogTrailsA 
## 
## REML criterion at convergence: 6.663 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 9.39e-02 3.06e-01     
##           Age         2.80e-04 1.67e-02 0.65
##  subclass (Intercept) 3.56e-13 5.96e-07     
##  Residual             1.51e-02 1.23e-01     
## Number of obs: 54, groups: HNDid, 27; subclass, 17
## 
## Fixed effects:
##              Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)   3.44710    0.08646 30.13000   39.87   <2e-16
## Age           0.01487    0.00645 17.11000    2.30    0.034
## PovStatBelow  0.26740    0.12071 27.12000    2.22    0.035
## 
## Correlation of Fixed Effects:
##             (Intr) Age   
## Age          0.696       
## PovStatBelw -0.538 -0.241

plot(st)

plot of chunk unnamed-chunk-5 plot of chunk unnamed-chunk-5


plot(mm1)

plot of chunk unnamed-chunk-5

Trails A Regression Model 2 for Men Only (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/MenlogTrailsA.rda")

library(lme4)
library(lmerTest)

(mm2 = lmer(log(TrailsAtestSec) ~ (Age + IPVstatus + PovStat + CES1)^4 + (Age | 
    HNDid) + (1 | subclass), data = MenlogTrailsA))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ (Age + IPVstatus + PovStat + CES1)^4 +      (Age | HNDid) + (1 | subclass) 
##    Data: MenlogTrailsA 
## REML criterion at convergence: 43.18 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.3157       
##           Age         0.0132   0.73
##  subclass (Intercept) 0.0000       
##  Residual             0.1391       
## Number of obs: 54, groups: HNDid, 27; subclass, 17
## Fixed Effects:
##                       (Intercept)                                Age  
##                          3.447849                           0.012913  
##                        IPVstatus1                       PovStatBelow  
##                          0.189737                           0.260888  
##                             CES11                     Age:IPVstatus1  
##                         -0.192804                          -0.012913  
##                  Age:PovStatBelow                          Age:CES11  
##                         -0.000304                          -0.008476  
##           IPVstatus1:PovStatBelow                   IPVstatus1:CES11  
##                         -0.235889                           0.072469  
##                PovStatBelow:CES11        Age:IPVstatus1:PovStatBelow  
##                          0.015006                           0.010065  
##              Age:IPVstatus1:CES11             Age:PovStatBelow:CES11  
##                          0.039516                           0.015395  
##     IPVstatus1:PovStatBelow:CES11  Age:IPVstatus1:PovStatBelow:CES11  
##                          0.466554                          -0.010697

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (1 | subclass) was eliminated because of standard deviation being equal to 0
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## 
## Random effects:
##                         Chi.sq Chi.DF elim.num p.value
## (Age | HNDid)             0.71      1        1  0.3985
##       (Age + 0 | HNDid)   0.00      1        2  1.0000
##       (1 | HNDid)        12.53      1     kept  0.0004
## 
## Fixed effects:
##                            Sum Sq Mean Sq NumDF DenDF F.value elim.num
## Age:IPVstatus:PovStat:CES1 0.0002  0.0002     1 22.56  0.0102        1
## Age:IPVstatus:PovStat      0.0002  0.0002     1 23.37  0.0012        2
## Age:PovStat:CES1           0.0004  0.0004     1 30.40  0.0378        3
## Age:PovStat                0.0135  0.0135     1 37.70  0.4003        4
## Age:IPVstatus:CES1         0.0671  0.0671     1 37.50  1.0879        5
## Age:IPVstatus              0.0159  0.0159     1 42.72  0.3558        6
## Age:CES1                   0.0317  0.0317     1 37.14  0.9375        7
## IPVstatus:PovStat:CES1     0.0094  0.0094     1 18.86  2.8892        8
## IPVstatus:PovStat          0.0011  0.0011     1 19.92  0.0138        9
## IPVstatus:CES1             0.0009  0.0009     1 22.33  0.0151       10
## PovStat:CES1               0.0023  0.0023     1 21.82  0.9086       11
## CES1                       0.0231  0.0231     1 22.93  1.0363       12
## IPVstatus                  0.0642  0.0642     1 23.95  1.5478       13
## Age                        0.2705  0.2705     1 49.06  6.5204     kept
## PovStat                    0.1203  0.1203     1 28.12  6.5818     kept
##                            Pr(>F)
## Age:IPVstatus:PovStat:CES1 0.9204
## Age:IPVstatus:PovStat      0.9725
## Age:PovStat:CES1           0.8472
## Age:PovStat                0.5307
## Age:IPVstatus:CES1         0.3036
## Age:IPVstatus              0.5540
## Age:CES1                   0.3392
## IPVstatus:PovStat:CES1     0.1056
## IPVstatus:PovStat          0.9077
## IPVstatus:CES1             0.9032
## PovStat:CES1               0.3509
## CES1                       0.3193
## IPVstatus                  0.2255
## Age                        0.0138
## PovStat                    0.0159
## 
## Least squares means:
##                PovStat Estimate Standard Error   DF t-value Lower CI
## PovStat  Above     1.0   3.3597         0.0672 25.9 50.0000     3.22
## PovStat  Below     2.0   3.6693         0.0968 27.0 37.9100     3.47
##                Upper CI p-value
## PovStat  Above     3.50  <2e-16
## PovStat  Below     3.87  <2e-16
## 
##  Differences of LSMEANS:
##                     Estimate Standard Error   DF t-value Lower CI Upper CI
## PovStat Above-Below     -0.3          0.121 28.1   -2.57   -0.557  -0.0624
##                     p-value
## PovStat Above-Below    0.02
## 
## Final model:
## lme4::lmer(formula = log(TrailsAtestSec) ~ Age + PovStat + (1 | 
##     HNDid), data = MenlogTrailsA, REML = reml, contrasts = l)

Re-run suggested final Model 2

(mm2 = lmer(log(TrailsAtestSec) ~ Age + PovStat + (Age | HNDid) + (1 | subclass), 
    data = MenlogTrailsA, contrasts = 1))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + PovStat + (Age | HNDid) + (1 | subclass) 
##    Data: MenlogTrailsA 
## REML criterion at convergence: 6.663 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 3.06e-01     
##           Age         1.67e-02 0.65
##  subclass (Intercept) 5.96e-07     
##  Residual             1.23e-01     
## Number of obs: 54, groups: HNDid, 27; subclass, 17
## Fixed Effects:
##  (Intercept)           Age  PovStatBelow  
##       3.4471        0.0149        0.2674

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ Age + PovStat + (Age | HNDid) + (1 | subclass) 
##    Data: MenlogTrailsA 
## 
## REML criterion at convergence: 6.663 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 9.39e-02 3.06e-01     
##           Age         2.80e-04 1.67e-02 0.65
##  subclass (Intercept) 3.56e-13 5.96e-07     
##  Residual             1.51e-02 1.23e-01     
## Number of obs: 54, groups: HNDid, 27; subclass, 17
## 
## Fixed effects:
##              Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)   3.44710    0.08646 30.13000   39.87   <2e-16
## Age           0.01487    0.00645 17.11000    2.30    0.034
## PovStatBelow  0.26740    0.12071 27.12000    2.22    0.035
## 
## Correlation of Fixed Effects:
##             (Intr) Age   
## Age          0.696       
## PovStatBelw -0.538 -0.241

plot(st)

plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7


plot(mm2)

plot of chunk unnamed-chunk-7