Loading library and data sets
suppressMessages(library(plyr))
## Warning: package 'plyr' was built under R version 3.1.3
suppressMessages(library(dplyr))
## Warning: package 'dplyr' was built under R version 3.1.3
suppressMessages(library(ggplot2))
## Warning: package 'ggplot2' was built under R version 3.1.3
data(ToothGrowth)
summary_1<-str(ToothGrowth)
## 'data.frame': 60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
summary_2<-summary(ToothGrowth)
summary_3<-ddply(ToothGrowth, .(supp, dose), summarise, count = length(len))
Following observations can be made
Further analysis can be done by plotting.
plot1 <- ggplot(ToothGrowth, aes(x=factor(dose),y=len,fill=factor(dose)))
plot1 + geom_boxplot() + facet_grid(.~supp) + scale_x_discrete("Dosage (mg)") +
stat_summary(fun.y=mean, colour="darkred", geom="point", shape=18, size=3,show_guide = FALSE) +
scale_y_continuous("Teeth Growth") +
ggtitle("Effect of Dosage and Supplement Type") +
theme(legend.position=c(1,0), legend.justification=c(1,0))
plot2 <- ggplot(ToothGrowth, aes(x=factor(supp),y=len,fill=factor(dose)))
plot2 + geom_boxplot() + facet_grid(.~dose) + scale_x_discrete("Dosage (mg)") +
stat_summary(fun.y=mean, colour="darkred", geom="point", shape=18, size=3,show_guide = FALSE) +
scale_y_continuous("Teeth Growth") +
ggtitle("Effect of Dosage and Supplement Type") +
theme(legend.position=c(1,0), legend.justification=c(1,0))
aggregate(ToothGrowth$len,list(supp = ToothGrowth$supp, dose = ToothGrowth$dose), FUN=function(x) c(mean =mean(x), median=median(x) ) )
## supp dose x.mean x.median
## 1 OJ 0.5 13.23 12.25
## 2 VC 0.5 7.98 7.15
## 3 OJ 1.0 22.70 23.45
## 4 VC 1.0 16.77 16.50
## 5 OJ 2.0 26.06 25.95
## 6 VC 2.0 26.14 25.95
It can be infered that
Hypothesis for the dose amount
Null hypothesis: No difference in tooth growth by dose amount Alternate hypothesis: More tooth growth by increase in dose amount
dose_half = ToothGrowth$len[ToothGrowth$dose == 0.5]
dose_one = ToothGrowth$len[ToothGrowth$dose == 1]
dose_two = ToothGrowth$len[ToothGrowth$dose == 2]
One-tailed independent t-test with unequal variance.
t.test(dose_half, dose_one, alternative = "less", paired = FALSE, var.equal = FALSE, conf.level = 0.95)
##
## Welch Two Sample t-test
##
## data: dose_half and dose_one
## t = -6.4766, df = 37.986, p-value = 6.342e-08
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -6.753323
## sample estimates:
## mean of x mean of y
## 10.605 19.735
t.test(dose_one, dose_two, alternative = "less", paired = FALSE, var.equal = FALSE, conf.level = 0.95)
##
## Welch Two Sample t-test
##
## data: dose_one and dose_two
## t = -4.9005, df = 37.101, p-value = 9.532e-06
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -4.17387
## sample estimates:
## mean of x mean of y
## 19.735 26.100
The p-value for both tests are lower than threshold of 0.05 which indicates that we can reject Null hypothesis. Thus we accept alternate hypothesis as correct which means that More tooth growth by increase in dose amount.
Hypothesis for the supp amount
Null hypothesis: No difference in teeth growth by use of supp Alternate hypothesis: More tooth growth by use of OJ (mean of OJ is more than VC)
One-tailed independent t-test with unequal variance.
supp_OJ = ToothGrowth[ToothGrowth$supp == 'OJ',1]
supp_VC = ToothGrowth[ToothGrowth$supp == 'VC',1]
t.test(supp_OJ, supp_VC, alternative = "greater", paired = FALSE, var.equal = FALSE, conf.level = 0.95)
##
## Welch Two Sample t-test
##
## data: supp_OJ and supp_VC
## t = 1.9153, df = 55.309, p-value = 0.03032
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.4682687 Inf
## sample estimates:
## mean of x mean of y
## 20.66333 16.96333
The p-value is above 0 but below threshold of 0.05 which indicates we can reject Null hypothesis. Thus we accpet Alternate hypothesis as correct which means More tooth growth by use of OJ.
With 95% level of confidence we can state that