Repeated Measures for Sense of Identity

# Loading the dataset that has been reset into a long version
load("/Users/levibrackman/data.test.RData")
# Load the psych package
library(psych)
items <- grep("APSI[0-8]", names(data.test), value = TRUE)
items
## [1] "APSI1" "APSI2" "APSI3" "APSI4" "APSI5" "APSI6" "APSI7" "APSI8"

scaleKey <- c(1, 1, 1, 1, 1, -1, 1, 1)
data.test[, items] <- apply(data.test[, items], 2, as.numeric)
data.test$meanAPSI <- scoreItems(scaleKey, items = data.test[, items])$score

For lme to work GROUP and ID need to be seen as factors

data.test$GROUP <- as.factor(data.test$GROUP)
data.test$ID <- as.factor(data.test$ID)

Describe the APSI variable by the GROUP variable

describeBy(data.test$meanAPSI, group = data.test$GROUP)
## INDICES: 0
##    vars  n mean   sd median trimmed  mad  min max range  skew kurtosis
## A1    1 80 3.97 0.66   4.06    4.01 0.56 2.25   5  2.75 -0.56     -0.2
##      se
## A1 0.07
## -------------------------------------------------------- 
## INDICES: 1
##    vars  n mean   sd median trimmed  mad  min max range  skew kurtosis
## A1    1 70 3.99 0.74      4    4.05 0.74 1.62   5  3.38 -0.73     0.25
##      se
## A1 0.09
## -------------------------------------------------------- 
## INDICES: 2
##    vars n mean  sd median trimmed  mad  min  max range skew kurtosis   se
## A1    1 5 3.73 0.5   3.75    3.73 0.56 3.12 4.38  1.25 0.06    -1.91 0.22

Create a plot that visualizes APSI variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
qplot(GROUP, meanAPSI, data = data.test, geom = "boxplot")
## Error: stat_boxplot requires the following missing aesthetics: y

# Load the nlme package
library(nlme)

Two way repeated measures


with(data.test, boxplot(meanAPSI ~ wave + GROUP))

plot of chunk unnamed-chunk-5

Graphing the Two-Way Interaction.

# Load the nlme package
library(nlme)

I am not sure if I am doing this right

baseline <- lme(meanAPSI ~ 1, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

APSIModel <- lme(meanAPSI ~ GROUP, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

APSI2Model <- lme(meanAPSI ~ GROUP + wave, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

fullModel <- lme(meanAPSI ~ GROUP * wave, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

We again the significance of our modeAPSI by comparing them from the baseline model using the anova() function.


anova(APSIModel, APSI2Model, fullModel)
##            Model df   AIC   BIC logLik   Test L.Ratio p-value
## APSIModel      1  7 305.6 326.9 -145.8                       
## APSI2Model     2  8 295.1 319.5 -139.6 1 vs 2   12.45   4e-04
## fullModel      3 10 278.3 308.8 -129.2 2 vs 3   20.78  <.0001
# Baseline would ot work for some reason. So it was removed.
summary(fullModel)
## Warning: NaNs produced
## Linear mixed-effects model fit by maximum likelihood
##  Data: data.test 
##     AIC   BIC logLik
##   278.3 308.8 -129.2
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:      0.5561
## 
##  Formula: ~1 | GROUP %in% ID
##         (Intercept)
## StdDev:      0.1869
## 
##  Formula: ~1 | wave %in% GROUP %in% ID
##         (Intercept) Residual
## StdDev:   4.563e-05   0.3225
## 
## Fixed effects: meanAPSI ~ GROUP * wave 
##              Value Std.Error DF t-value p-value
## (Intercept)  3.966    0.1454 89  27.276  0.0000
## GROUP1      -0.733    0.2116  0  -3.462     NaN
## GROUP2      -0.981    0.5939 89  -1.651  0.1022
## wave        -0.023    0.0782 59  -0.297  0.7677
## GROUP1:wave  0.566    0.1177 59   4.810  0.0000
## GROUP2:wave  0.538    0.3319 59   1.620  0.1105
##  Correlation: 
##             (Intr) GROUP1 GROUP2 wave   GROUP1:
## GROUP1      -0.685                             
## GROUP2      -0.245  0.168                      
## wave        -0.753  0.519  0.184               
## GROUP1:wave  0.508 -0.773 -0.124 -0.661        
## GROUP2:wave  0.177 -0.122 -0.754 -0.236  0.156 
## 
## Standardized Within-Group Residuals:
##      Min       Q1      Med       Q3      Max 
## -2.36421 -0.45437 -0.01919  0.46833  1.98595 
## 
## Number of Observations: 155
## Number of Groups: 
##                      ID           GROUP %in% ID wave %in% GROUP %in% ID 
##                      91                      92                     154