Processing math: 100%

This example will go through the basics of using Stan by way of the brms library, for estimation of linear and generalized linear mixed models.

We will use the ECLS-K 2011 data for our example, and use height for age/sex z-score as a continous outcome, and short for age status outcome (height for age z < -1) as a dichotomous outcome.

There is an overview on using brms for fitting various models. You can find these here. The package rstanarm is very similar and better documented, and can be found here, with numerous tutorials on that page.

Both packages serve as front-ends to the Stan library for MCMC. People new to Stan can often be put off by its syntax and model construction. Both of these packages allow us to use R syntax that we are accustomed to from functions like glmer() and lmer() to fit models. We can also see the Stan code from the model that is generated, so we can learn how Stan works inside.

First we load our data and recode some variables:

load("~/Google Drive/dem7903_App_Hier/data/eclsk_11.Rdata")
names(eclsk11)<-tolower(names(eclsk11))
library (car)
library(brms)
library(pscl)
#get out only the variables I'm going to use for this example

myvars<-c("childid", "x_chsex_r", "x1locale", "x_raceth_r", "x2povty", "x12par1ed_i","p1curmar", "x1htotal", "x1mscalk1", "x2mscalk1", "x3mscalk1", "x4mscalk1", "p1hscale", "p2hscale", "p4hscale","x2fsstat2","x4fsstat2", "x12sesl","x4sesl_i", "p2parct1", "p2parct2", "s1_id", "p2safepl","x2krceth","p1o2near", "x_distpov" , "w1c0", "w1p0", "w2p0", "w1c0str", "w1p0str","w4c4p_40","w4c4p_4str", "w4c4p_4psu",  "w1c0psu", "w1p0psu", "x1height","x2height","x3height","x4height", "x1kage_r","x2kage_r","x3age","x4age")

#subset the data
eclsk.sub<-eclsk11[,myvars]

rm(eclsk11); gc()
##           used (Mb) gc trigger   (Mb)  max used   (Mb)
## Ncells 1683030 89.9    2637877  140.9   2164898  115.7
## Vcells 2999552 22.9  219471228 1674.5 182881024 1395.3
#Longitudinal variables
#recode our outcomes, the  first is the child's math standardized test score  in Kindergarten
eclsk.sub$math1<-ifelse(eclsk.sub$x1mscalk1<0, NA, eclsk.sub$x1mscalk1)
eclsk.sub$math2<-ifelse(eclsk.sub$x2mscalk1<0, NA, eclsk.sub$x2mscalk1)
#eclsk.sub$math3<-ifelse(eclsk.sub$x3mscalk1<0, NA, eclsk.sub$x3mscalk1)
eclsk.sub$math4<-ifelse(eclsk.sub$x4mscalk1<0, NA, eclsk.sub$x4mscalk1)

#Second outcome is child's height for age, continuous outcome
eclsk.sub$height1<-ifelse(eclsk.sub$x1height<=-7, NA, eclsk.sub$x1height)
eclsk.sub$height2<-ifelse(eclsk.sub$x2height<=-7, NA, eclsk.sub$x2height)
#eclsk.sub$height3<-ifelse(eclsk.sub$x3height<=-7, NA, eclsk.sub$x3height)
eclsk.sub$height4<-ifelse(eclsk.sub$x4height<=-7, NA, eclsk.sub$x4height)

#Age at each wave
eclsk.sub$age_yrs1<-ifelse(eclsk.sub$x1kage_r<0, NA, eclsk.sub$x1kage_r/12)
eclsk.sub$age_yrs2<-ifelse(eclsk.sub$x2kage_r<0, NA, eclsk.sub$x2kage_r/12)
#eclsk.sub$age_yrs3<-ifelse(eclsk.sub$x3age<0, NA, eclsk.sub$x3age/12)
eclsk.sub$age_yrs4<-ifelse(eclsk.sub$x4age<0, NA, eclsk.sub$x4age/12)

eclsk.sub<- eclsk.sub[is.na(eclsk.sub$age_yrs1)==F, ]

#Height for age z score standardized by sex and age
eclsk.sub$height_z1<-ave(eclsk.sub$height1, as.factor(paste(round(eclsk.sub$age_yrs1, 1.5), eclsk.sub$male)), FUN=scale)
eclsk.sub$height_z2<-ave(eclsk.sub$height2, as.factor(paste(round(eclsk.sub$age_yrs2, 1.5), eclsk.sub$male)), FUN=scale)
#eclsk.sub$height_z3<-ave(eclsk.sub$height3, as.factor(paste(round(eclsk.sub$age_yrs3, 1.5), eclsk.sub$male)), FUN=scale)
eclsk.sub$height_z4<-ave(eclsk.sub$height4, as.factor(paste(round(eclsk.sub$age_yrs4, 1.5), eclsk.sub$male)), FUN=scale)


#Household food insecurity, dichotomous outcome
#This outcome is only present at two waves
eclsk.sub$foodinsec1<-recode(eclsk.sub$x2fsstat2, recodes="2:3=1; 1=0; else=NA")
eclsk.sub$foodinsec2<-recode(eclsk.sub$x4fsstat2, recodes="2:3=1; 1=0; else=NA")


#Child health assessment Excellent to poor , ordinal outcome
eclsk.sub$chhealth1<-ifelse(eclsk.sub$p1hscale<0, NA, eclsk.sub$p1hscale)
eclsk.sub$chhealth2<-ifelse(eclsk.sub$p2hscale<0, NA, eclsk.sub$p2hscale)
eclsk.sub$chhealth4<-ifelse(eclsk.sub$p4hscale<0, NA, eclsk.sub$p4hscale)

#SES
eclsk.sub$hhses1<-ifelse(eclsk.sub$x12sesl==-9, NA, scale(eclsk.sub$x12sesl))
eclsk.sub$hhses4<-ifelse(eclsk.sub$x4sesl_i==-9, NA, scale(eclsk.sub$x4sesl_i))

#Non time varying variables
#First we recode some Child characteristics
#Child's sex: recode as male =1
eclsk.sub$male<-recode(eclsk.sub$x_chsex_r, recodes="1=1; 2=0; -9=NA")

#Recode race with white, non Hispanic as reference using dummy vars
eclsk.sub$hisp<-recode (eclsk.sub$x_raceth_r, recodes="3:4=1;-9=NA; else=0")
eclsk.sub$black<-recode (eclsk.sub$x_raceth_r, recodes="2=1;-9=NA; else=0")
eclsk.sub$asian<-recode (eclsk.sub$x_raceth_r, recodes="5=1;-9=NA; else=0")
eclsk.sub$nahn<-recode (eclsk.sub$x_raceth_r, recodes="6:7=1;-9=NA; else=0")
eclsk.sub$other<-recode (eclsk.sub$x_raceth_r, recodes="8=1;-9=NA; else=0")


#Then we recode some parent/mother characteristics
#Mother's education, recode as 2 dummys with HS = reference
eclsk.sub$lths<-recode(eclsk.sub$x12par1ed_i, recodes = "0:2=1; 3:8=0; else = NA")
eclsk.sub$gths<-recode(eclsk.sub$x12par1ed_i, recodes = "1:3=0; 4:8=1; else =NA") 

#marital status, recode as 2 dummys, ref= married
eclsk.sub$single<-recode(eclsk.sub$p1curmar, recodes="4=1; -7:-9=NA; else=0")
eclsk.sub$notmar<-recode(eclsk.sub$p1curmar, recodes="2:3=1; -7:-9=NA; else=0")


#Then we do some household level variables

#Urban school location = 1
eclsk.sub$urban<-recode(eclsk.sub$x1locale, recodes = "1:3=1; 4=0; -1:-9=NA")

#poverty level in poverty = 1
eclsk.sub$pov<-recode(eclsk.sub$x2povty , recodes ="1:2=1; 3=0; -9=NA")

#Household size
eclsk.sub$hhsize<-eclsk.sub$x1htotal

#school % minority student body
eclsk.sub$minorsch<-ifelse(eclsk.sub$x2krceth <0, NA, eclsk.sub$x2krceth/10)

#Unsafe neighborhood
eclsk.sub$unsafe<-recode(eclsk.sub$p2safepl , recodes = "1:2='unsafe'; 3='safe'; else=NA", as.factor.result = T)

#school district poverty
eclsk.sub$dist_pov<-ifelse(eclsk.sub$x_distpov==-9, NA, scale(eclsk.sub$x_distpov))


#mean centered weights for wave 1
eclsk.sub$wts1<-eclsk.sub$w1c0/mean(eclsk.sub$w1c0, na.rm=T)
eclsk.sub$wtsp1<-eclsk.sub$w1p0/mean(eclsk.sub$w1p0, na.rm=T)

Survey weights, the right way!

This is an example of how to use survey design weights with linear mixed models. Here is an example of using weights that sum to the strata-specific sample size. First, I make an id that is the strata, then I follow the first method described by Carle (2009).

eclsk.sub$sampleid<-eclsk.sub$w1c0str
#within each sampling unit, sum the weights
wts<-tapply(eclsk.sub$w1c0,eclsk.sub$sampleid,sum)
#make a data frame from this
wts<-data.frame(id=names(unlist(wts)), wt=unlist(wts))
#get the unique sampling location ids'
t1<-as.data.frame(table(eclsk.sub$sampleid))
#put all of this into a data set
wts2<-data.frame(ids=wts$id, sumwt=wts$wt, jn=t1$Freq)
head(wts2)
##   ids    sumwt  jn
## 1   1 63224.28 293
## 2   2 15747.17  67
## 3   3 23367.05 114
## 4   4 28346.22 129
## 5   5 36348.00 121
## 6   6 34575.17 169
#merge all of this back to the original data file
eclsk.sub<-merge(eclsk.sub, wts2, by.x="sampleid", by.y="ids", all.x=T)

eclsk.sub$swts<-eclsk.sub$w1c0*(eclsk.sub$jn/eclsk.sub$sumwt)

#compare standardized weights to old person weights
hist(eclsk.sub$swts); summary(eclsk.sub$swts)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##  0.0561  0.7025  0.9494  1.0000  1.1910  4.1870      28
hist(eclsk.sub$w1c0); summary(eclsk.sub$w1c0)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0   172.5   240.7   255.6   302.8   958.8

Linear Mixed Model Regression Example

The First model will fit a model that considers the individual and family level variables and a random intercept only. One may state a reserach question such as:

“Do children living in households in poverty have lower height for age/sex z-scores than children living in households that are not in poverty, net of other demographic and socioeconomic factors?”

So the hypothesis of interest here involves us testing whether the effect of household poverty shows a β coefficient different from zero.

If we were to write the symbolic form of this model it would be:

yij=β0j+βkxik+eij β0j=β0+uj eijN(0,σ2e) ujN(0,σ2u)

In terms of priors, we need them for each fixed effect β and for σ2. We can a Normal prior for β parameters, since they can be both positive or negative, but the null hypothesis is that they are 0. Here we will use half-cauchy priors for the residual variance and the between-intercept variance. and priors:

βN(0,10)

σehalf-Cauchy(5)

σuhalf-Cauchy(5)

prior<-c(set_prior("normal(0,10)", class="b"),#prior for the beta's
         set_prior("cauchy(0,5)", class="sigma"),#prior for the residual std. deviation
         set_prior("cauchy(0,5)", class="sd", group="s1_id"))#prior for the random intercept std. deviation
fit.1<-brm(height_z1|weights(swts)~male+hisp+black+asian+nahn+other+lths+gths+single+notmar+urban+hhsize+pov+(1|s1_id)+(1|w1c0str:w1c0psu), data=eclsk.sub, family=gaussian(),
              prior = prior, 
              warmup=500, #burnin for 500 interations for each chain = 1000 burnin
              iter=1000, chains=2, #2*1000 =2000 - 1000 burnin = 1000 total iterations
              cores=2,seed = 1115, #number of computer cores, 1 per chain is good.
              save_model="~/Google Drive/dem7903_App_Hier/code/code16/fit_lmm_stan.txt")
## Compiling the C++ model
print(fit.1, digits=3)
##  Family: gaussian (identity) 
## Formula: height_z1 | weights(swts) ~ male + hisp + black + asian + nahn + other + lths + gths + single + notmar + urban + hhsize + pov + (1 | s1_id) + (1 | w1c0str:w1c0psu) 
##    Data: eclsk.sub (Number of observations: 10665) 
## Samples: 2 chains, each with iter = 1000; warmup = 500; thin = 1; 
##          total post-warmup samples = 1000
##    WAIC: Not computed
##  
## Random Effects: 
## ~s1_id (Number of levels: 853) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sd(Intercept)    0.152     0.016    0.121    0.181        298 1.009
## 
## ~w1c0str:w1c0psu (Number of levels: 234) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sd(Intercept)    0.111     0.019    0.075    0.148        162 1.012
## 
## Fixed Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## Intercept    0.051     0.047   -0.036    0.143        806 1.003
## male         0.155     0.018    0.119    0.189       1000 0.999
## hisp        -0.046     0.031   -0.104    0.013        619 1.000
## black        0.375     0.034    0.309    0.439        768 0.999
## asian       -0.271     0.050   -0.365   -0.172       1000 1.003
## nahn         0.278     0.091    0.105    0.452       1000 1.000
## other        0.079     0.046   -0.005    0.170       1000 0.998
## lths         0.009     0.037   -0.069    0.079        761 1.001
## gths         0.046     0.026   -0.006    0.094        738 0.999
## single      -0.048     0.031   -0.109    0.010        807 0.999
## notmar      -0.015     0.031   -0.075    0.048        781 0.999
## urban        0.001     0.008   -0.013    0.018        758 0.999
## hhsize      -0.027     0.007   -0.042   -0.013       1000 0.998
## pov         -0.087     0.022   -0.131   -0.044        973 1.001
## 
## Family Specific Parameters: 
##                  Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sigma(height_z1)    0.956     0.007    0.942    0.969       1000 0.999
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
rstan_gg_options(fill = "skyblue", color = "skyblue4", pt_color = "red")
stanplot(fit.1,pars=c("sigma_height_z1","sd_s1_id_Intercept"), type="dens"  )+ggtitle("Posterior Density for Variances")

stanplot(fit.1,pars="sd_s1_id_Intercept", type="trace" )+ggtitle("Traceplot for Between school Intercept Variance")

stanplot(fit.1, pars = "^b", type = "plot", ci_level = 0.95)+ggtitle("95% Credible Intervals for fixed effects")
## ci_level: 0.95 (95% intervals)
## outer_level: 0.95 (95% intervals)

#We can do a hypothesis test for the poverty parameter
h0pov<-hypothesis(fit.1, "hisp<0", class = "b") #larger evidence ratio = more support
h0pov
## Hypothesis Tests for class b:
##          Estimate Est.Error l-95% CI u-95% CI Evid.Ratio 
## hisp < 0    -0.05      0.03     -Inf        0      13.71 
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
#extract the MCMC samples from the model
samps<-fit.1$fit

#calculate the bayesian p value for a parameter, in this case, Pr(b_black > 0)
#Remember, higher values mean you have more support for your hypothesis!
mean( samps@sim$samples[[1]]$b_black  > 0)
## [1] 1

In terms of our research question, we have evidence that the poverty effect is negative, with a credible interval that does not contain 0, so we can conclude that our research hypothesis has support.

Hierarchical Logistic Regression Example

The next model will fit a model that considers a binary response of childhood growth stunting. . A research question corresponding to this could be:

“Do children living in households in poverty have have higher odds of growth stunting than children living in households that are not in poverty, net of other demographic and socioeconomic factors?”

So the hypothesis of interest here involves us testing whether the effec of household poverty shows a β coefficient different from zero.

If we were to write the symbolic form of this model it would be the logistic regression model: lnpij1pij=β0j+βkxik β0j=β0+uj ujN(0,σ2u)

In terms of priors, we need them for each fixed effect β and for σ2u. We can a Normal prior for β parameters, since they can be both positive or negative, but the null hypothesis is that they are 0. Here we will use half-cauchy priors for the between-intercept variance, and there is no prior for the residual variance, becuase in the logistic model, this is the constant π23.

βN(0,10)

σuhalf-Cauchy(5)

eclsk.sub$stunt<-ifelse(eclsk.sub$height_z1 < -1, 1,0)

#bayesian model
prior<-c(set_prior("normal(0,1)", class="b"),
         set_prior("cauchy(0,5)", class="sd", group="s1_id"))
#no residual sigma for the binomial
fit.b<-brm(stunt|weights(swts)~male+hisp+black+asian+nahn+other+lths+gths+single+notmar+urban+hhsize+pov+(1|s1_id)+(1|w1c0str:w1c0psu), data=eclsk.sub, family=bernoulli(),
              prior = prior, 
              warmup=500, 
              iter=1000, chains=2, 
              cores=2,seed = 1115,
              save_model="~/Google Drive/dem7903_App_Hier/code/code16/fit_glmm_b_stan.txt")
print(fit.b, digits=3)
##  Family: bernoulli (logit) 
## Formula: stunt | weights(swts) ~ male + hisp + black + asian + nahn + other + lths + gths + single + notmar + urban + hhsize + pov + (1 | s1_id) + (1 | w1c0str:w1c0psu) 
##    Data: eclsk.sub (Number of observations: 10665) 
## Samples: 2 chains, each with iter = 1000; warmup = 500; thin = 1; 
##          total post-warmup samples = 1000
##    WAIC: Not computed
##  
## Random Effects: 
## ~s1_id (Number of levels: 853) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sd(Intercept)    0.243     0.064    0.106    0.354        102 1.003
## 
## ~w1c0str:w1c0psu (Number of levels: 234) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sd(Intercept)     0.15     0.063    0.019    0.267        105 1.003
## 
## Fixed Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## Intercept   -1.879     0.118   -2.120   -1.660       1000 0.999
## male        -0.345     0.053   -0.453   -0.245        841 1.000
## hisp         0.063     0.081   -0.100    0.220       1000 1.000
## black       -0.743     0.114   -0.964   -0.510       1000 1.000
## asian        0.629     0.125    0.378    0.867       1000 1.003
## nahn        -0.121     0.268   -0.681    0.374       1000 0.998
## other        0.115     0.123   -0.129    0.356       1000 0.998
## lths         0.025     0.101   -0.172    0.222        872 0.998
## gths        -0.103     0.074   -0.249    0.043       1000 1.001
## single      -0.057     0.093   -0.229    0.122        842 0.999
## notmar      -0.176     0.101   -0.375    0.017       1000 0.999
## urban       -0.023     0.020   -0.061    0.017        813 1.000
## hhsize       0.070     0.020    0.031    0.109       1000 0.999
## pov          0.191     0.066    0.065    0.322        911 0.999
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
rstan_gg_options(fill = "skyblue", color = "skyblue4", pt_color = "red")
stanplot(fit.b,pars="sd_s1_id_Intercept", type="dens" )+ggtitle("Posterior Density for Between school Intercept Variance")

stanplot(fit.b,pars="sd_s1_id_Intercept", type="trace" )+ggtitle("Traceplot for Between school Intercept Variance")

stanplot(fit.b, pars = "^b", type = "plot", ci_level = 0.95)+ggtitle("95% Credible Intervals for fixed effects")

h0pov<-hypothesis(fit.b, "pov>0")
h0pov
## Hypothesis Tests for class b:
##         Estimate Est.Error l-95% CI u-95% CI Evid.Ratio  
## pov > 0     0.19      0.07     0.08      Inf        499 *
## ---
## '*': The expected value under the hypothesis lies outside the 95% CI.
samps<-fit.b$fit
#Bayesian p value for the poverty effect, combining the samples from chains 1 and 2
mean(c(samps@sim$samples[[1]]$b_pov, samps@sim$samples[[2]]$b_pov) >0)
## [1] 0.9945
#Credible interval for the odds ratio
or_pov<-exp(c(samps@sim$samples[[1]]$b_pov, samps@sim$samples[[2]]$b_pov))
quantile(or_pov, p=c(0, .025, .05, .5, .95, .975, 1))
##        0%      2.5%        5%       50%       95%     97.5%      100% 
## 0.4160436 1.0602785 1.0807511 1.2108747 1.3586282 1.3823291 2.3214061

In terms of our research question, we have evidence that the poverty effect is positive, with a credible interval that does not contain 0, so we can conclude that our research hypothesis has support.

Random Slope/Intercept models

The second model considers both random intercepts and random slopes, in this case, i’m only considering a random slope for poverty status. This would imply the proposition:

“Do children living in poverty face a disadvantage in terms of their height for age z-score equally in every school?”

If we were to write the symbolic form of this model it would be: yij=β0j+βkxik+βj pov povi+eij β0j=β0+u1j βj pov=βpov+u2j u~MVN(0,Σ) Σ=[σ1σ12σ21σ2]

the term βj pov povi is the effect of poverty for the jth school. Since we have two random effects in the model at the school level, it’s easier to model them with a correlation matrix, called a LKJ prior.

prior<-c(set_prior("normal(0,10)", class="b"),#prior for the beta's
         set_prior("cauchy(0,5)", class="sigma"),#prior for the residual std. deviation
         set_prior("cauchy(0,5)", class="sd", group="s1_id"),#prior for the random intercept std. deviation
         set_prior("lkj(2)", class = "cor", group="s1_id"))
fit.2d<-brm(height_z1|weights(swts)~male+hisp+black+asian+nahn+other+lths+gths+single+notmar+urban+hhsize+hhses1+pov+(pov|s1_id)+(1|w1c0str:w1c0psu), data=eclsk.sub, family=gaussian(),
              prior = prior, 
              warmup=500, #burnin for 500 interations for each chain = 1000 burnin
              iter=1000, chains=2, #2*1000 =2000 - 1000 burnin = 1000 total iterations
              cores=2,seed = 1115, #number of computer cores, 1 per chain is good.
           save_model="~/Google Drive/dem7903_App_Hier/code/code16/fit_lmm_2d_stan.txt"
              )
print(fit.2d, digits=3)
##  Family: gaussian (identity) 
## Formula: height_z1 | weights(swts) ~ male + hisp + black + asian + nahn + other + lths + gths + single + notmar + urban + hhsize + hhses1 + pov + (pov | s1_id) + (1 | w1c0str:w1c0psu) 
##    Data: eclsk.sub (Number of observations: 10665) 
## Samples: 2 chains, each with iter = 1000; warmup = 500; thin = 1; 
##          total post-warmup samples = 1000
##    WAIC: Not computed
##  
## Random Effects: 
## ~s1_id (Number of levels: 853) 
##                    Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sd(Intercept)         0.173     0.022    0.130    0.215        193 1.005
## sd(pov)               0.196     0.056    0.047    0.283         36 1.067
## cor(Intercept,pov)   -0.492     0.227   -0.774    0.101         54 1.044
## 
## ~w1c0str:w1c0psu (Number of levels: 234) 
##               Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept)    0.106     0.019    0.069    0.142        323    1
## 
## Fixed Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## Intercept    0.045     0.046   -0.044    0.128       1000 0.999
## male         0.156     0.019    0.119    0.192       1000 0.999
## hisp        -0.044     0.030   -0.106    0.013       1000 1.000
## black        0.381     0.036    0.312    0.449       1000 1.001
## asian       -0.281     0.052   -0.383   -0.178       1000 0.999
## nahn         0.290     0.096    0.104    0.477       1000 1.000
## other        0.079     0.051   -0.015    0.176       1000 0.999
## lths         0.019     0.039   -0.057    0.093       1000 1.000
## gths         0.025     0.028   -0.032    0.077       1000 0.998
## single      -0.042     0.032   -0.103    0.021       1000 0.998
## notmar      -0.015     0.031   -0.075    0.048       1000 0.999
## urban        0.002     0.008   -0.014    0.017       1000 0.998
## hhsize      -0.027     0.008   -0.043   -0.013       1000 0.999
## hhses1       0.034     0.018   -0.002    0.071       1000 0.998
## pov         -0.061     0.028   -0.115   -0.006       1000 0.999
## 
## Family Specific Parameters: 
##                  Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sigma(height_z1)    0.952     0.007    0.938    0.964       1000 1.002
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
rstan_gg_options(fill = "skyblue", color = "skyblue4", pt_color = "red")
stanplot(fit.2d,pars="sigma_height_z1", type="dens"  )+ggtitle("Posterior Density for Residual Variance")

stanplot(fit.2d,pars=c("sigma_height_z1","sd_s1_id_Intercept","sd_s1_id_pov"), type="dens" )+ggtitle("Posterior Density for Variances")

stanplot(fit.2d,pars="sd_s1_id_Intercept", type="trace" )+ggtitle("Traceplot for Between school Intercept Variance")

stanplot(fit.2d,pars="sd_s1_id_pov", type="trace" )+ggtitle("Traceplot for Between school poverty effect Variance")

stanplot(fit.2d,pars="cor_s1_id_Intercept_pov", type="dens" )+ggtitle("Posterior Density for correlation between school random slope and Intercept")

stanplot(fit.2d,pars="cor_s1_id_Intercept_pov", type="trace" )+ggtitle("Traceplot for correlation between school random slope and Intercept")

stanplot(fit.2d, pars = "^b", type = "plot", ci_level = 0.95)+ggtitle("95% Credible Intervals for fixed effects")