Derek Corcoran derek.corcoran.barrios@gmail.com
2016-03-23
\( p* = 1 - \left( 1 - p \right)^t \)
\( \psi = \frac{Sd}{S \times\ p*} \)
\( \psi = \frac{exp(Cov \times\ \beta)}{1 + exp(Cov \times\ \beta)} \)
\( p* = 1 - \left( 1 - p \right)^t \)
\( \psi = \frac{Sd}{S \times\ p*} \)
p = 0.25
\( p* = 1 - \left( 1 - 0.25 \right)^3 \) = 0.578125
S = 100
Sd = 30
\( \psi = \frac{30}{100 \times\ 0.578} \) = 0.7111111
More repeated sampling p* ~ 1
Occupancy covariates
Bled et al Ecol Evol. 2013 Dec; 3(15): 4896–4909.
Advantages
Cons
BatOccupancy <- read.csv("~/Documents/OccupancyClass/OccupancyClass/Data/BatOccu.csv", row.names=1)
head(BatOccupancy[,1:6], 6)
Myyu1 Myyu2 Myyu3 Myca1 Myca2 Myca3
1 0 0 0 0 0 0
2 1 0 0 1 0 0
3 0 0 0 0 1 0
4 0 0 0 0 0 0
5 0 0 0 1 1 1
6 1 0 0 1 1 1
OccuCov <- read.csv("~/Documents/OccupancyClass/OccupancyClass/Data/OccuCov.csv", row.names=1)
head(OccuCov[,1:3], 6)
Distance.to.water Distance.to.road Existing.vegetation
1 0 325.2647 3.000000
2 0 0.0000 15.294588
3 0 0.0000 4.769200
4 0 0.0000 4.705464
5 0 0.0000 14.224747
6 0 2308.6010 15.727460
DetCov <- read.csv("~/Documents/OccupancyClass/OccupancyClass/Data/DetCov.csv", row.names=1)
head(DetCov[,1:6], 3)
Julian1 Julian2 Julian3 max.hum1 max.hum2 max.hum3
1 -1.683391 -1.683391 -1.683019 0.50559738 1.2023565 1.120956
2 -1.620723 -1.620723 -1.620362 1.06758108 1.2023565 1.120956
3 -1.684443 -1.684443 -1.684071 -0.05638632 0.7919892 1.120956
class(DetCov)
[1] "data.frame"
Julian <- DetCov[,1:3]
MaxHum <- DetCov[,4:6]
MaxTemp<- DetCov[,7:9]
DetCov <- list(Julian, MaxHum, MaxTemp)
str(DetCov)
List of 3
$ :'data.frame': 49 obs. of 3 variables:
..$ Julian1: num [1:49] -1.68 -1.62 -1.68 -1.56 -1.43 ...
..$ Julian2: num [1:49] -1.68 -1.62 -1.68 -1.56 -1.43 ...
..$ Julian3: num [1:49] -1.68 -1.62 -1.68 -1.56 -1.43 ...
$ :'data.frame': 49 obs. of 3 variables:
..$ max.hum1: num [1:49] 0.5056 1.0676 -0.0564 1.0676 1.0676 ...
..$ max.hum2: num [1:49] 1.202 1.202 0.792 -0.667 1.202 ...
..$ max.hum3: num [1:49] 1.12 1.12 1.12 -1.13 1.12 ...
$ :'data.frame': 49 obs. of 3 variables:
..$ max.temp1: num [1:49] 1.069 -0.633 1.58 -1.484 0.899 ...
..$ max.temp2: num [1:49] -0.0154 -1.2512 -0.3685 1.2205 0.8674 ...
..$ max.temp3: num [1:49] -1.366 -0.292 -1.366 1.498 0.245 ...
names(DetCov)
NULL
names(DetCov) <- c("julian", "maxhum", "maxtemp")
names(DetCov)
[1] "julian" "maxhum" "maxtemp"
batchoccu(pres, sitecov, obscov, spp, form)
Remember, we need p to calculate psi (detection before occupancy)
BatOccupancy <-batchoccu(pres = BatOccu, sitecov = sampling.cov, obscov = Dailycov,spp = 17, form = ~ Julian + Meanhum + Meantemp + sdhum + sdtemp ~ Burn.intensity.soil + I(Burn.intensity.soil^2) + Burn.intensity.Canopy + I(Burn.intensity.Canopy^2) + Burn.intensity.basal + I(Burn.intensity.basal^2))
names(BatOccupancy)
[1] "Covs" "models" "fit"
summary(BatOccupancy$fit)
species.1 species.2 species.3 species.4
Min. :0.0000 Min. :0.5986 Min. :0.0000172 Min. :0.008451
1st Qu.:0.2063 1st Qu.:0.5986 1st Qu.:0.0793515 1st Qu.:0.233748
Median :0.2063 Median :0.9318 Median :0.0819457 Median :0.326263
Mean :0.4747 Mean :0.8136 Mean :0.2416942 Mean :0.412809
3rd Qu.:0.9815 3rd Qu.:1.0000 3rd Qu.:0.3609691 3rd Qu.:0.326263
Max. :1.0000 Max. :1.0000 Max. :0.9175235 Max. :1.000000
species.5 species.6 species.7 species.8
Min. :0.1516 Min. :0.000000 Min. :0.0000 Min. :0.6796
1st Qu.:0.2312 1st Qu.:0.000000 1st Qu.:0.0000 1st Qu.:0.6796
Median :0.2621 Median :0.000000 Median :1.0000 Median :1.0000
Mean :0.4689 Mean :0.107158 Mean :0.7144 Mean :0.8626
3rd Qu.:0.8661 3rd Qu.:0.001519 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :0.9987 Max. :0.999823 Max. :1.0000 Max. :1.0000
species.9 species.10 species.11 species.12
Min. :0.0000 Min. :0.1003 Min. :0.2048 Min. :0.0000328
1st Qu.:0.0000 1st Qu.:0.3106 1st Qu.:0.4072 1st Qu.:0.1361721
Median :0.3026 Median :0.3106 Median :0.4072 Median :0.1361721
Mean :0.3351 Mean :0.4615 Mean :0.5099 Mean :0.3196240
3rd Qu.:0.3026 3rd Qu.:0.5953 3rd Qu.:0.6333 3rd Qu.:0.4862649
Max. :1.0000 Max. :0.9977 Max. :0.9079 Max. :0.9984151
species.13 species.14 species.15 species.16
Min. :0.6563 Min. :0.003293 Min. :0.01588 Min. :0.0000
1st Qu.:0.6563 1st Qu.:0.680732 1st Qu.:0.08033 1st Qu.:0.0000
Median :1.0000 Median :0.680732 Median :0.08048 Median :0.1327
Mean :0.8527 Mean :0.702009 Mean :0.20998 Mean :0.2825
3rd Qu.:1.0000 3rd Qu.:0.906443 3rd Qu.:0.31015 3rd Qu.:0.1327
Max. :1.0000 Max. :1.000000 Max. :0.78746 Max. :1.0000
species.17
Min. :0.0000
1st Qu.:0.0000
Median :0.0000
Mean :0.2860
3rd Qu.:0.9999
Max. :1.0000
BatOccupancy$models[[2]]
Call:
occu(formula = form, data = models[[i]])
Occupancy:
Estimate SE z P(>|z|)
(Intercept) 0.40 4.69e-01 0.851434 0.395
Burn.intensity.soil 95.69 1.35e+04 0.007090 0.994
I(Burn.intensity.soil^2) 12.52 9.69e+03 0.001292 0.999
Burn.intensity.Canopy 50.65 7.51e+03 0.006740 0.995
I(Burn.intensity.Canopy^2) -7.99 8.03e+03 -0.000996 0.999
Burn.intensity.basal 48.91 9.86e+03 0.004958 0.996
I(Burn.intensity.basal^2) -19.96 7.24e+02 -0.027573 0.978
Detection:
Estimate SE z P(>|z|)
(Intercept) 0.6266 0.213 2.948 0.0032
Julian 0.0365 0.229 0.159 0.8735
Meanhum -0.3775 0.253 -1.494 0.1351
Meantemp 0.1632 0.234 0.697 0.4859
sdhum -0.3506 0.230 -1.523 0.1278
sdtemp 0.1857 0.227 0.820 0.4125
AIC: 201.6127
responseplot.occu(batch = BatOccupancy, spp = 15, variable = Burn.intensity.soil)
BatOccupancy2 <- batchoccu(pres = BatOccu[,1:9], sitecov = sampling.cov, obscov = Dailycov,spp = 3, form = ~ Meanhum + Meantemp ~ Burn.intensity.basal + I(Burn.intensity.basal^2), dredge = TRUE)
BatOccupancy2$models[[3]]
Call:
occu(formula = ~1 ~ Burn.intensity.basal + 1, data = data2)
Occupancy:
Estimate SE z P(>|z|)
(Intercept) -2.098 0.605 -3.47 0.00052
Burn.intensity.basal 0.401 0.157 2.56 0.01041
Detection:
Estimate SE z P(>|z|)
0.0424 0.422 0.1 0.92
AIC: 93.19072
responseplot.occu(batch = BatOccupancy2, spp = 3, variable = Burn.intensity.basal)
What if we have spatial data
library(raster)
plot(plumas.stack)
lets make it smaller
e <- extent(-120.9305, -120.4498, 40.06769, 40.29006)
little.plumas <- stack(crop(plumas.stack, e))
plot(little.plumas)
Occupancy.stack <- occupancy.predict(batch = BatOccupancy2, new.data =
little.plumas)
doing row 1000 of 7366
doing row 2000 of 7366
doing row 3000 of 7366
doing row 4000 of 7366
doing row 5000 of 7366
doing row 6000 of 7366
doing row 7000 of 7366
doing row 1000 of 7366
doing row 2000 of 7366
doing row 3000 of 7366
doing row 4000 of 7366
doing row 5000 of 7366
doing row 6000 of 7366
doing row 7000 of 7366
doing row 1000 of 7366
doing row 2000 of 7366
doing row 3000 of 7366
doing row 4000 of 7366
doing row 5000 of 7366
doing row 6000 of 7366
doing row 7000 of 7366
plot(Occupancy.stack)
BatAbundance <-diversityoccu(pres = BatOccu, sitecov = sampling.cov, obscov = Dailycov, spp = 17, form = ~ Julian + Meanhum + Meantemp + sdhum + sdtemp ~ Burn.intensity.soil + I(Burn.intensity.soil^2) + Burn.intensity.Canopy + I(Burn.intensity.Canopy^2) + Burn.intensity.basal + I(Burn.intensity.basal^2))
names(BatAbundance)
[1] "Covs" "models" "Diversity" "species"
summary(BatAbundance$species)
h species.1 species.2 species.3
Min. :1.696 Min. : 0.1821 Min. :1.073 Min. :0.000542
1st Qu.:2.398 1st Qu.: 0.4731 1st Qu.:1.073 1st Qu.:0.085348
Median :2.420 Median : 0.6350 Median :1.325 Median :0.091487
Mean :2.353 Mean : 1.7536 Mean :2.087 Mean :0.333119
3rd Qu.:2.447 3rd Qu.: 1.4990 3rd Qu.:2.708 3rd Qu.:0.408665
Max. :2.614 Max. :19.1502 Max. :9.461 Max. :1.476396
species.4 species.5 species.6
Min. : 0.000038 Min. : 0.2464 Min. : 0.000000
1st Qu.: 1.343394 1st Qu.: 0.2899 1st Qu.: 0.000000
Median : 1.721218 Median : 0.2952 Median : 0.000000
Mean : 2.397644 Mean : 1.0541 Mean : 0.737486
3rd Qu.: 2.015600 3rd Qu.: 1.4820 3rd Qu.: 0.008663
Max. :17.789285 Max. :10.6545 Max. :16.441510
species.7 species.8 species.9
Min. : 0.000012 Min. : 1.829 Min. : 0.000000
1st Qu.: 1.218543 1st Qu.: 2.095 1st Qu.: 0.000189
Median : 2.238009 Median : 2.249 Median : 0.541591
Mean : 2.969009 Mean : 3.664 Mean : 1.741684
3rd Qu.: 2.238009 3rd Qu.: 3.952 3rd Qu.: 0.541591
Max. :18.070975 Max. :14.265 Max. :18.810809
species.10 species.11 species.12 species.13
Min. : 0.4309 Min. :0.2316 Min. : 0.000105 Min. : 1.208
1st Qu.: 0.5594 1st Qu.:0.6008 1st Qu.: 0.382454 1st Qu.: 1.669
Median : 0.5594 Median :0.6008 Median : 0.382454 Median : 1.669
Mean : 2.4271 Mean :1.1235 Mean : 1.401939 Mean : 2.894
3rd Qu.: 1.4307 3rd Qu.:1.1922 3rd Qu.: 1.134847 3rd Qu.: 3.319
Max. :15.3103 Max. :9.7570 Max. :16.532914 Max. :14.566
species.14 species.15 species.16 species.17
Min. : 0.2582 Min. :0.01365 Min. : 0.07254 Min. : 0.00000
1st Qu.: 1.1639 1st Qu.:0.11791 1st Qu.: 0.38360 1st Qu.: 0.04024
Median : 1.2887 Median :0.12278 Median : 0.38360 Median : 0.04024
Mean : 1.9526 Mean :0.34580 Mean : 1.72885 Mean : 1.85095
3rd Qu.: 1.2887 3rd Qu.:0.35698 3rd Qu.: 1.00365 3rd Qu.: 0.81726
Max. :18.3584 Max. :2.23085 Max. :17.17240 Max. :17.23991
responseplot is a ggplot object easy to modify
responseplot.abund(BatAbundance, spp = 1, variable = Burn.intensity.Canopy)
library(ggplot2)
K <- responseplot.abund(BatAbundance, spp = 1, variable = Burn.intensity.Canopy)
K + geom_line(color = "red") + theme_dark()
glm.diversity <- model.diversity(BatAbundance, method = "g")
Initialization...
TASK: Genetic algorithm in the candidate set.
Initialization...
Algorithm started...
After 10 generations:
Best model: Diversity~1+Distance.to.water+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -52.0648889944561
Mean crit= -23.0874592331985
Change in best IC: -10052.0648889945 / Change in mean IC: -10023.0874592332
After 20 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -26.1162904286894
Change in best IC: -2.07293293273222 / Change in mean IC: -3.02883119549091
After 30 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -27.3416183573206
Change in best IC: 0 / Change in mean IC: -1.22532792863121
After 40 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -31.3760956091094
Change in best IC: 0 / Change in mean IC: -4.03447725178883
After 50 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -33.5809148824801
Change in best IC: 0 / Change in mean IC: -2.20481927337073
After 60 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -33.606625575121
Change in best IC: 0 / Change in mean IC: -0.0257106926408071
After 70 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -34.0636926314006
Change in best IC: 0 / Change in mean IC: -0.457067056279683
After 80 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -35.368872443821
Change in best IC: 0 / Change in mean IC: -1.30517981242036
After 90 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -36.1831813160029
Change in best IC: 0 / Change in mean IC: -0.814308872181932
After 100 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -37.026039284821
Change in best IC: 0 / Change in mean IC: -0.842857968818095
After 110 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -37.4617538920523
Change in best IC: 0 / Change in mean IC: -0.435714607231297
After 120 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -37.8742056068967
Change in best IC: 0 / Change in mean IC: -0.412451714844345
After 130 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -38.3136399553681
Change in best IC: 0 / Change in mean IC: -0.439434348471458
After 140 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -38.3136399553681
Change in best IC: 0 / Change in mean IC: 0
After 150 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -39.9304714375888
Change in best IC: 0 / Change in mean IC: -1.61683148222068
After 160 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -41.1377045036642
Change in best IC: 0 / Change in mean IC: -1.20723306607542
After 170 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -41.5543890425529
Change in best IC: 0 / Change in mean IC: -0.416684538888688
After 180 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -42.3982097248786
Change in best IC: 0 / Change in mean IC: -0.84382068232572
After 190 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -42.3982097248786
Change in best IC: 0 / Change in mean IC: 0
After 200 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -43.2138423896629
Change in best IC: 0 / Change in mean IC: -0.815632664784239
After 210 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -43.2138423896629
Change in best IC: 0 / Change in mean IC: 0
After 220 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -43.2138423896629
Change in best IC: 0 / Change in mean IC: 0
After 230 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -43.2430526903089
Change in best IC: 0 / Change in mean IC: -0.0292103006460209
After 240 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -44.000486844813
Change in best IC: 0 / Change in mean IC: -0.757434154504097
After 250 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -44.000486844813
Change in best IC: 0 / Change in mean IC: 0
After 260 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -44.3999566727291
Change in best IC: 0 / Change in mean IC: -0.39946982791615
After 270 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -44.8002509766616
Change in best IC: 0 / Change in mean IC: -0.400294303932498
After 280 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -45.1481852378435
Change in best IC: 0 / Change in mean IC: -0.347934261181848
After 290 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -45.5433997857362
Change in best IC: 0 / Change in mean IC: -0.395214547892714
After 300 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -45.5433997857362
Change in best IC: 0 / Change in mean IC: 0
After 310 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -45.9037098234346
Change in best IC: 0 / Change in mean IC: -0.36031003769839
After 320 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -45.9037098234346
Change in best IC: 0 / Change in mean IC: 0
After 330 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -45.9037098234346
Change in best IC: 0 / Change in mean IC: 0
After 340 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -46.3036859815423
Change in best IC: 0 / Change in mean IC: -0.399976158107677
After 350 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -46.3036859815423
Change in best IC: 0 / Change in mean IC: 0
After 360 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -46.3036859815423
Change in best IC: 0 / Change in mean IC: 0
After 370 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -46.6999302953086
Change in best IC: 0 / Change in mean IC: -0.396244313766317
After 380 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -46.6999302953086
Change in best IC: 0 / Change in mean IC: 0
After 390 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -46.6999302953086
Change in best IC: 0 / Change in mean IC: 0
After 400 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -46.6999302953086
Change in best IC: 0 / Change in mean IC: 0
After 410 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -46.6999302953086
Change in best IC: 0 / Change in mean IC: 0
After 420 generations:
Best model: Diversity~1+Existing.vegetation+Burn.intensity.soil+Burn.intensity.Canopy
Crit= -54.1378219271883
Mean crit= -46.6999302953086
Improvements in best and average IC have bebingo en below the specified goals.
Algorithm is declared to have converged.
Completed.
kable(glm.diversity$Table)
model | aicc | weights | Delta.AICc |
---|---|---|---|
Diversity ~ 1 + Existing.vegetation + Burn.intensity.soil + Burn.intensity.Canopy | -54.13782 | 0.4985534 | 0.000000 |
Diversity ~ 1 + Existing.vegetation + Altitude + Burn.intensity.soil + Burn.intensity.Canopy | -52.96446 | 0.2772807 | 1.173361 |
Diversity ~ 1 + Distance.to.road + Existing.vegetation + Burn.intensity.soil + Burn.intensity.Canopy | -52.53917 | 0.2241658 | 1.598649 |
glm.diversity$Best_model
Diversity ~ 1 + Existing.vegetation + Burn.intensity.soil + Burn.intensity.Canopy
<environment: 0xaefa900>
responseplot.diver(glm.diversity, variable = Burn.intensity.Canopy)
Selected.area <- diversity.predict(model = BatAbundance, diverse = glm.diversity,
new.data = little.plumas, quantile.nth = 0.85, species =
c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE,FALSE,FALSE))
doing row 1000 of 7366
doing row 2000 of 7366
doing row 3000 of 7366
doing row 4000 of 7366
doing row 5000 of 7366
doing row 6000 of 7366
doing row 7000 of 7366
doing row 1000 of 7366
doing row 2000 of 7366
doing row 3000 of 7366
doing row 4000 of 7366
doing row 5000 of 7366
doing row 6000 of 7366
doing row 7000 of 7366
plot(Selected.area$priority.area, colNA = "black")
You get a KMZ file in your working directory to see it in google earth!
names(Selected.area)
[1] "species" "diversity.raster" "priority.area"
plot(Selected.area$diversity.raster, colNA = "black")
plot(Selected.area$species, colNA = "black")
Advantages
Cons
- Almost the same as in DiversityOccupancy
BatOccupancy <- read.csv("~/Documents/OccupancyClass/OccupancyClass/Data/BatOccu.csv", row.names=1)
head(BatOccupancy[,1:12], 3)
Myyu1 Myyu2 Myyu3 Myca1 Myca2 Myca3 Myci1 Myci2 Myci3 Myvo1 Myvo2 Myvo3
1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0 0 1 0 0
3 0 0 0 0 1 0 0 0 0 0 0 0
MyyuOccupancy <- BatOccupancy[,1:3]
head(MyyuOccupancy, 3)
Myyu1 Myyu2 Myyu3
1 0 0 0
2 1 0 0
3 0 0 0
- Detection and Occupancy covariates work the same as in DiversityOccupancy
library(unmarked)
SimOccuMyYu <- unmarkedFrameOccu(y = MyyuOccupancy, siteCovs = sampling.cov , obsCovs = Dailycov)
plot(SimOccuMyYu)
Repeat for every species
model.Occu.My.Yu <- occu(~ Julian + Meanhum + Meantemp ~ Burn.intensity.Canopy + I(Burn.intensity.Canopy^2) + Burn.intensity.basal + I(Burn.intensity.basal^2), SimOccuMyYu)
summary(model.Occu.My.Yu)
Call:
occu(formula = ~Julian + Meanhum + Meantemp ~ Burn.intensity.Canopy +
I(Burn.intensity.Canopy^2) + Burn.intensity.basal + I(Burn.intensity.basal^2),
data = SimOccuMyYu)
Occupancy (logit-scale):
Estimate SE z P(>|z|)
(Intercept) -1.3 0.839 -1.55 0.120
Burn.intensity.Canopy 148.4 111.760 1.33 0.184
I(Burn.intensity.Canopy^2) -20.5 19.623 -1.05 0.295
Burn.intensity.basal -112.1 85.498 -1.31 0.190
I(Burn.intensity.basal^2) 11.9 11.761 1.01 0.313
Detection (logit-scale):
Estimate SE z P(>|z|)
(Intercept) -1.357 0.333 -4.07 4.71e-05
Julian 0.359 0.322 1.11 2.65e-01
Meanhum 0.511 0.338 1.51 1.31e-01
Meantemp 0.428 0.299 1.43 1.53e-01
AIC: 103.9714
Number of sites: 49
optim convergence code: 1
optim iterations: 171
Bootstrap iterations: 0
plot(model.Occu.My.Yu)
model.Occu.My.Yu1 <- occu(~ Julian + Meanhum + Meantemp ~ Burn.intensity.Canopy + I(Burn.intensity.Canopy^2) + Burn.intensity.basal + I(Burn.intensity.basal^2), SimOccuMyYu)
model.Occu.My.Yu <- occu(~ 1 ~ 1, SimOccuMyYu)
model.Occu.My.Yu2 <- occu(~ Julian + Meanhum + Meantemp ~ Burn.intensity.Canopy + Burn.intensity.basal, SimOccuMyYu)
fl <- fitList(Full=model.Occu.My.Yu1, linear=model.Occu.My.Yu2, Null=model.Occu.My.Yu)
ms <- modSel(fl, nullmod="Null")
ms
nPars AIC delta AICwt cumltvWt Rsq
Full 9 103.97 0.00 0.50 0.50 0.32
linear 7 104.71 0.74 0.34 0.84 0.24
Null 2 106.24 2.26 0.16 1.00 0.00
Set every model you need
Please respond the following survey, it is important for me to get feedback from you